

Optical Fibre Communication Systems

Lecture 2: Nature of Light and Light Propagation

Professor Z Ghassemlooy
Northumbria University

Contents

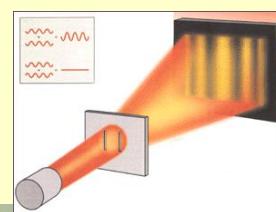
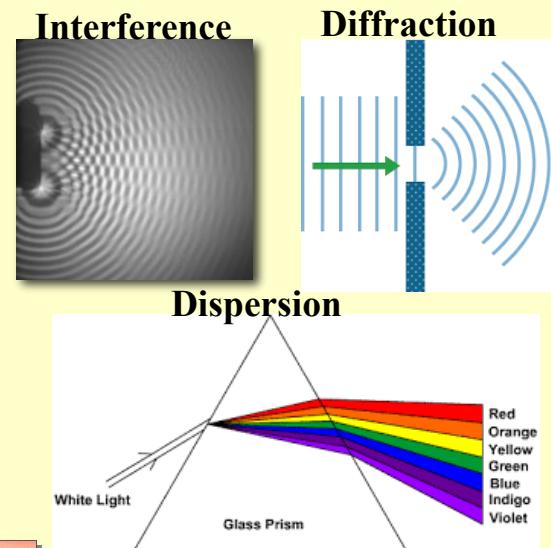
- Wave Nature of Light
- Particle Nature of Light
- Electromagnetic Wave
- Reflection, Refraction, and Total Internal Reflection
- Ray Properties in Fibre
- Types of Fibre
- Fibre Characteristics
 - Attenuation
 - Dispersion
 - Bandwidth Distance Product
- Summary

Wave Nature of Light

- Newton (1680) believed in the **particle theory** of light. In **reflection** and **refraction**, light behaved as a particle. He explained the straight-line casting of sharp shadows of objects placed in a light beam. But he could not explain the textures of shadows

- Young (1800) – Showed that light interfered with itself. **Wave theory**: Explains interference, diffraction, and dispersion.
- The **wave theory** is also able to account for the fact that the edges of a shadow are not quite sharp.

This theory describes: *Propagation, reflection, refraction and attenuation*



G Ekspong, Stockholm University, Sweden, 1999.

Wave Nature of Light - *contd.*

James Clerk Maxwell
(1831-1879)

James Clerk Maxwell (1850) - Mathematical theory of electromagnetism led to the view that **light is of electromagnetic nature, propagating as a wave** from the source to the receiver.

Heinrich Hertz (1887) - Discovered **experimentally the existence of electromagnetic waves at radio-frequencies.**

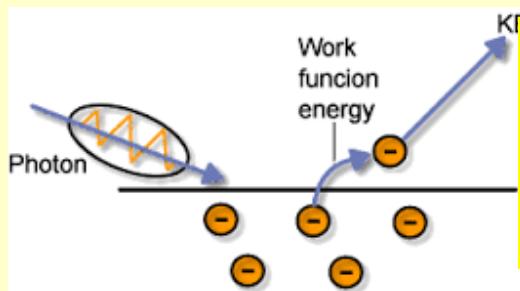
Wave theory does not describe the absorption of light by a photosensitive materials

He discovered the photoelectric effect. So what is it?

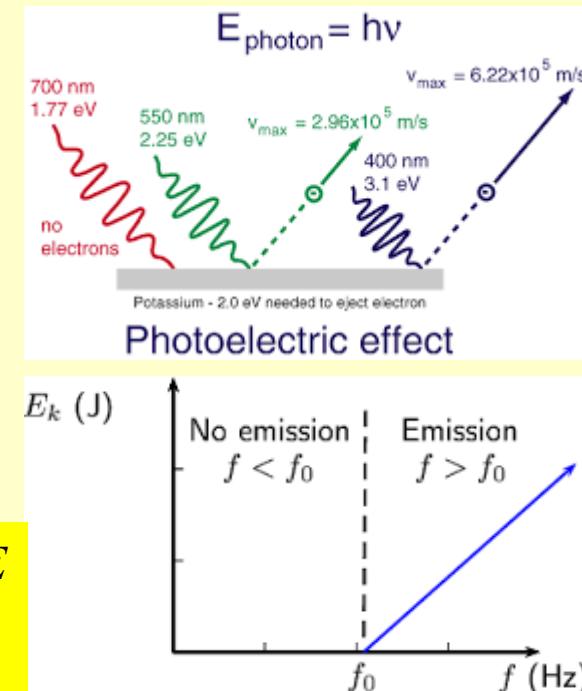
Wave Nature of Light - *contd.*

Light (electromagnetic wave) shining on a metal surface results in its **energy** being transferred to the **electrons** on the surface of the metal and some **electron will escape**. The released electron are called “**photo-electron**”.

$E_{\text{photo-electron}}$ is related to f_{incident} light but **not its intensity**. So light is energetic enough to shift electron(s) or not.

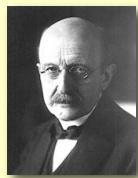


The work function – The amount of E needed by the EM wave to free an electron from a meta surface (i.e., a $E_{\text{threshold}}$).



1900-20 Max Planck, Neils Bohr and Albert Einstein
Invoked the idea of light being emitted in tiny pulses of energy.

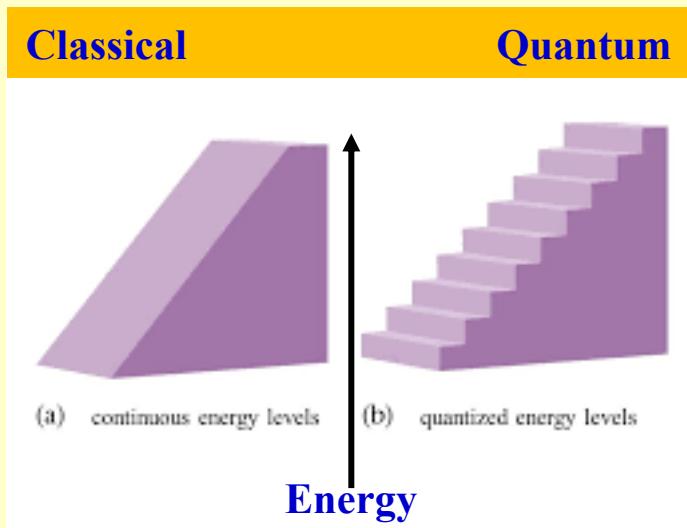
Wave Nature of Light - *contd.*



Planck (1900) - Developed a model that explained light as a **quantization of energy** [Got a Nobel Prize].

Considered the Black Body cavity:

- $E = nhf$ $n = 0, 1, 2, 3..$, $h = \text{Planck's constant } 6.626 \times 10^{-34} \text{ JS [or } 4.136 \times 10^{-15} \text{ eVs}]$, $f = \text{frequency of one of the standing wave within a black body.}$
- *The energy spectrum of the standing wave within the black body cavity is not continuous as in the classical theory, but take specific values:*



E.g., - A standing wave within a black body cavity has a frequency $f = 7.25 \times 10^{14} \text{ Hz}$ (Blue-violet).

The energy is: $E = n(4.136 \times 10^{-15} \text{ eVs})(7.25 \times 10^{14} \text{ Hz}) = n(3 \text{ eV})$,

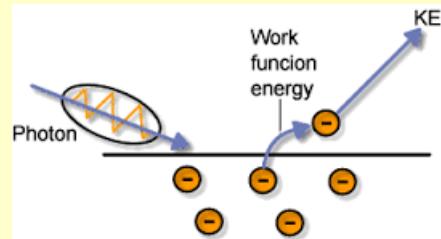
So for $n = 1, 2, 3, 4, ..$ we have $E = 3, 6, 9, 12,$ **But not for 1, 2, 4, 5, 7, 8 and so on.**

Interesting!

This contradicted the continuous wave theory of light, where wave DO NOT have distinct constituent!

Wave Nature of Light - *contd.*

Einstein (1905) – Used Plank's idea to showed that, in the photoelectric effect (light causing electrons to be emitted from a metal surface) **light must act as a particle**.



He came up with this:

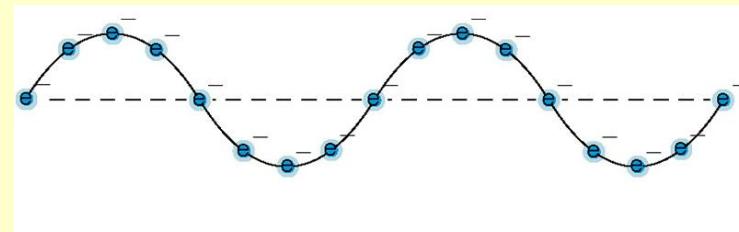
$$K_{\max} = hf - \phi$$

Max. kinetic Energy of an electron

Work function

Therefore, light must be regarded as having a **dual nature**;

- in some cases light acts as a wave
- in others it acts like a particle.



Particle Nature of Light

Light behaviour can be explained in terms of the amount of energy imparted in an interaction with some other medium. In this case, a beam of light is composed of a stream of small lumps or QUANTA of energy, known as **PHOTONS**. Each photon carries with it a precisely defined amount of energy defined as:

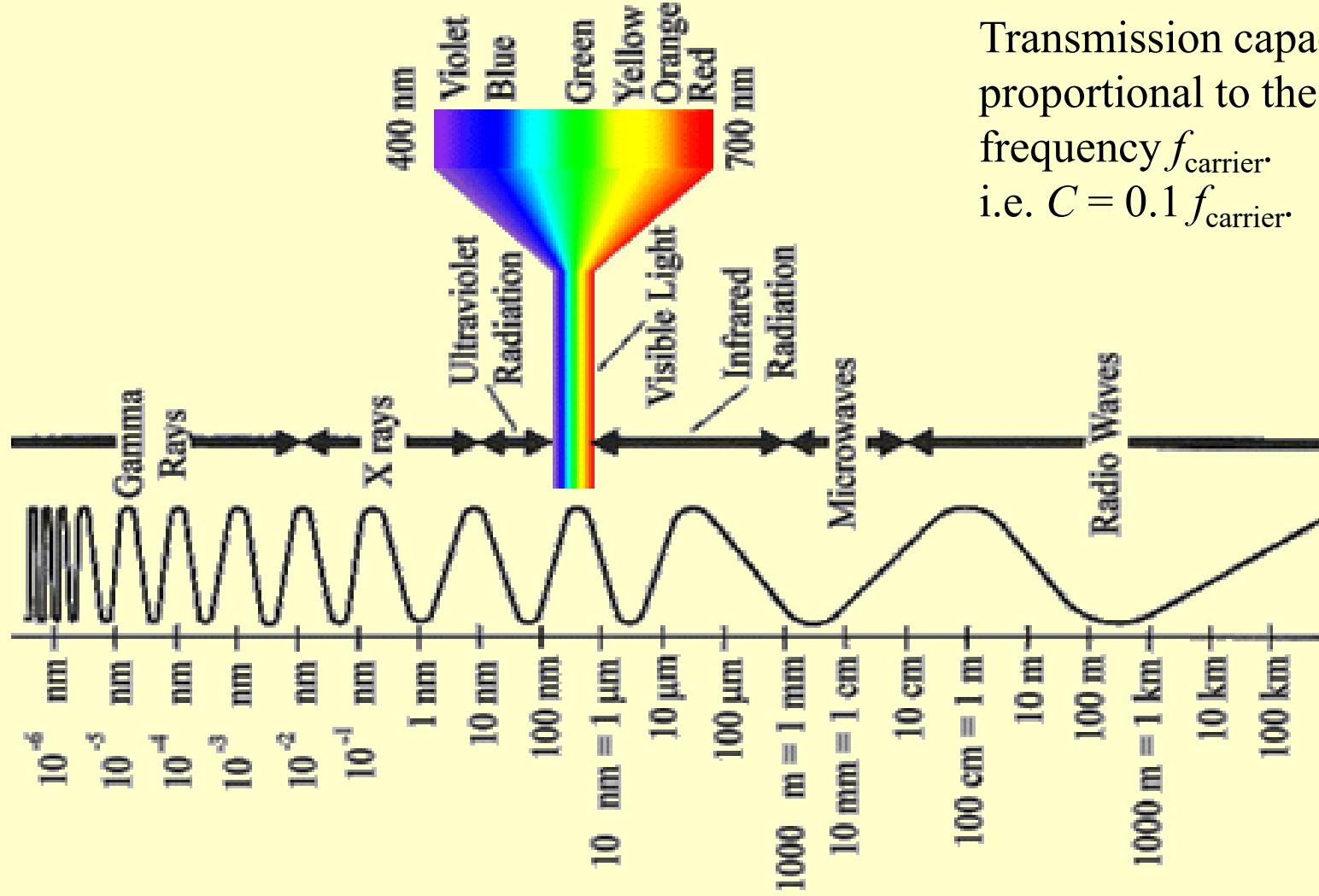
$$W_p = h * f \quad \text{Joules (J)}$$

where; h = Plank's constant = 6.626×10^{-34} J.s, f = Frequency Hz

The convenient unit of energy is electron volt (eV), which is the kinetic energy acquired by an electron when accelerated to 1 eV = 1.6×10^{-19} J.

- Even though a photon can be thought of as a **particle of energy** it still has a fundamental wavelength, which is equivalent to that of the propagating wave as described by the wave model.
- **This model of light is useful when the light source contains only a few photons.**

Electromagnetic Spectrum



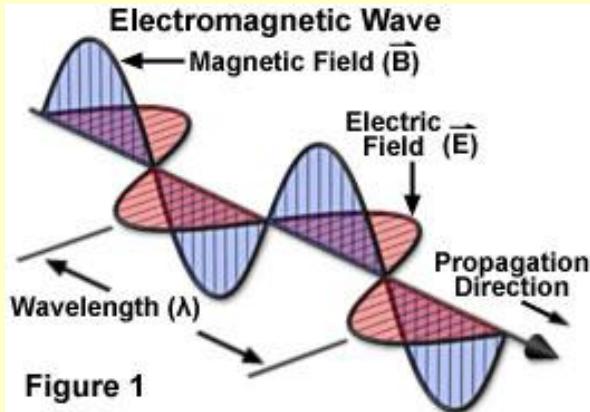
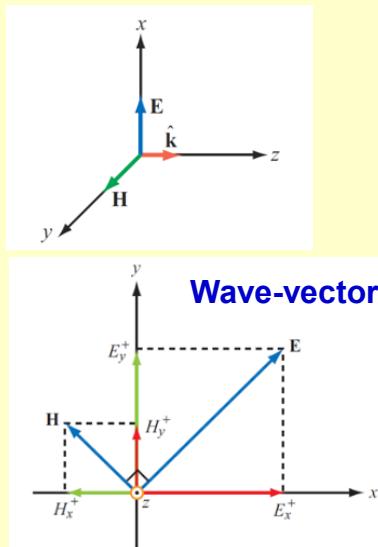
Transmission capacity C is proportional to the carrier frequency f_{carrier} .
i.e. $C = 0.1 f_{\text{carrier}}$.

Electromagnetic Radiation

- Carries energy through space (includes visible light, dental x-rays, radio waves, heat radiation from a fireplace)
- The wave is composed of a combination of mutually perpendicular electric and magnetic fields the direction of propagation of the wave is at right angles to both field directions, this is known as an:

ELECTROMAGNETIC (EM) WAVE

EM wave move through a vacuum at 3.0×10^8 m/s ("speed of light")



$$\mathbf{E} = \mathbf{E}_0(z, \phi) e^{j(\omega t - \beta z)}$$

$$\mathbf{H} = \mathbf{H}_0(z, \phi) e^{j(\omega t - \beta z)}$$

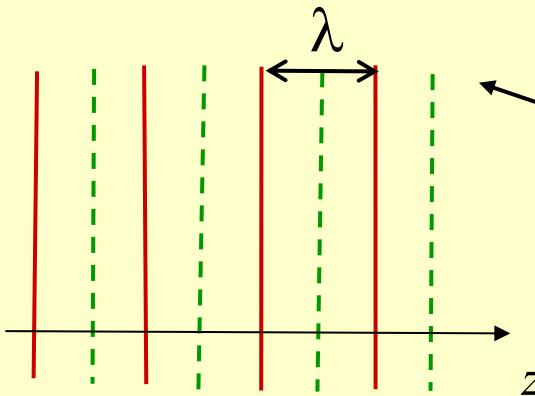
$$E = v_p H = [c/n]H$$

Speed of light in a vacuum $c = f \times \lambda_o$

β - Propagation constant $= \omega/v_p$

The Wave Equation

Solutions to Maxwell's equations:

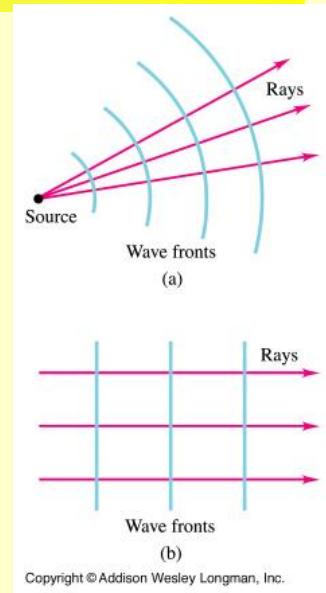


phase fronts

Ideal isotropic

radiation

Spherical wave:



Copyright © Addison Wesley Longman, Inc.

Plane wave: At a large distance from a source.

Constant phase → Wave-front is a plane

$$y(z, t) = A \sin(kz - \omega t - \phi)$$

In complex form

$$y(z, t) = A e^{j(kz - \omega t - \phi)}$$

$A e^{-j\phi}$ Complex amplitude or "phasor"

Wave number in vacuum

$$k = \frac{2\pi}{\lambda}$$

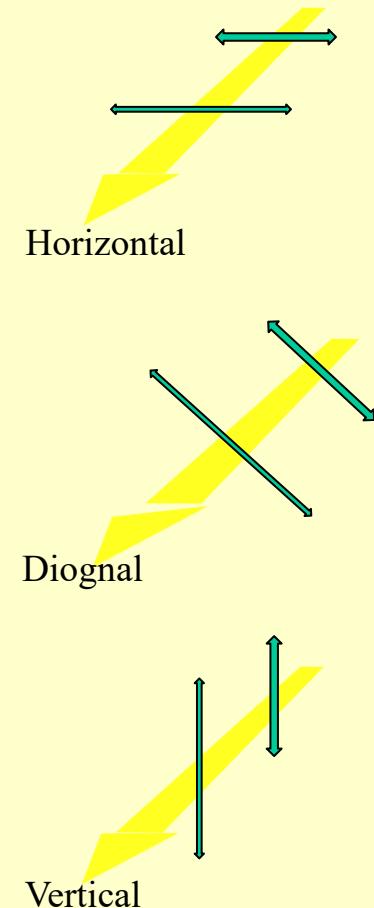
$$\begin{aligned} k &= n \cdot k_0 \\ \lambda &= \lambda_0 / n \end{aligned}$$

Note: $k = \beta$

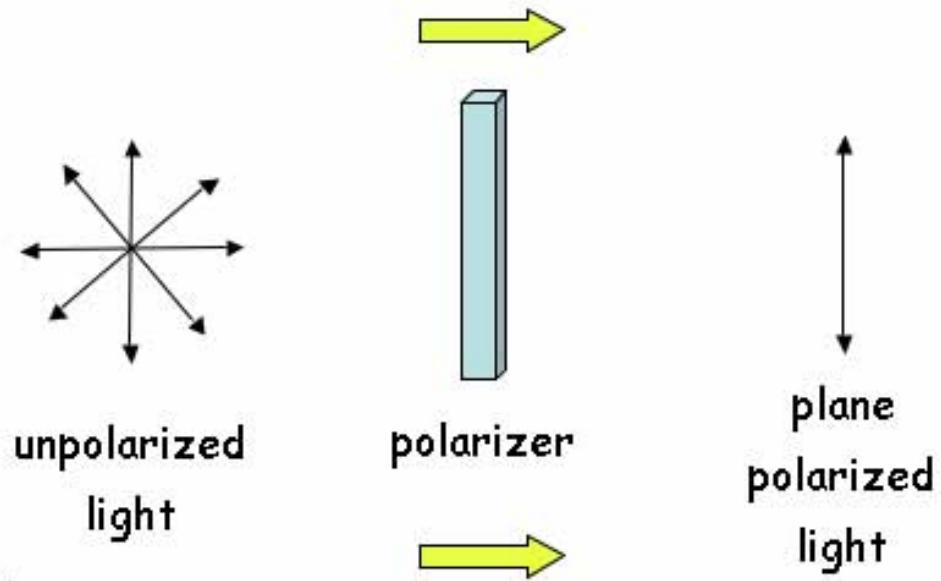
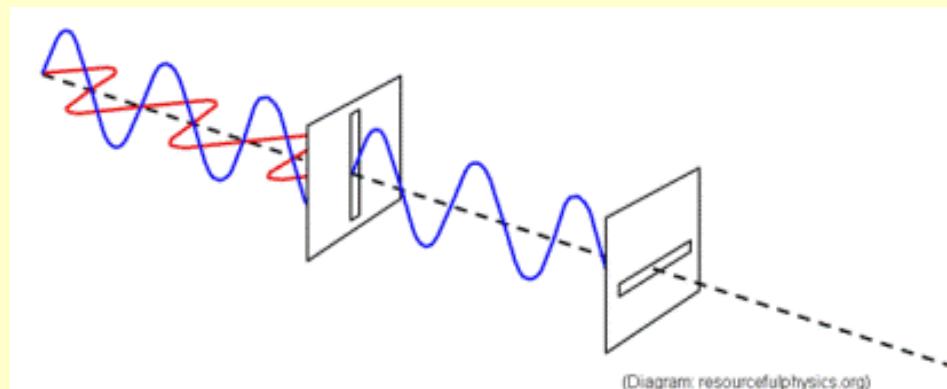
$$\begin{aligned} k &= \omega \sqrt{\epsilon \mu_0} = \sqrt{\epsilon_r} \cdot \omega \sqrt{\epsilon_0 \mu_0} = \sqrt{\epsilon_r} \cdot k_0 \\ n &= \sqrt{\epsilon_r} \end{aligned}$$

Polarization

- Demonstrates the transverse nature of EM wave.
- Un-polarized light source: The electric field is vibrating in many directions; all perpendicular to the direction of propagation.
- Polarized light source: The vibration of the electric field is mostly in one direction. Any direction is possible as long as it's perpendicular to the propagation.
- Types of polarization - Depending on existence and changes of different electric fields
 - Linear
 - Horizontal (E field changing in parallel with respect to earth's surface)
 - Vertical (E field going up/down with respect to earth's surface)
 - Dual polarized
 - Circular (E_x and E_y)
 - Similar to satellite communications
 - Tx and Rx must agree on direction of rotation
 - Elliptical
 - Linear polarization is used in WiFi communications



Polarization



(Diagram: resourcefulphysics.org)

One Dimensional EM Wave

Incident wave

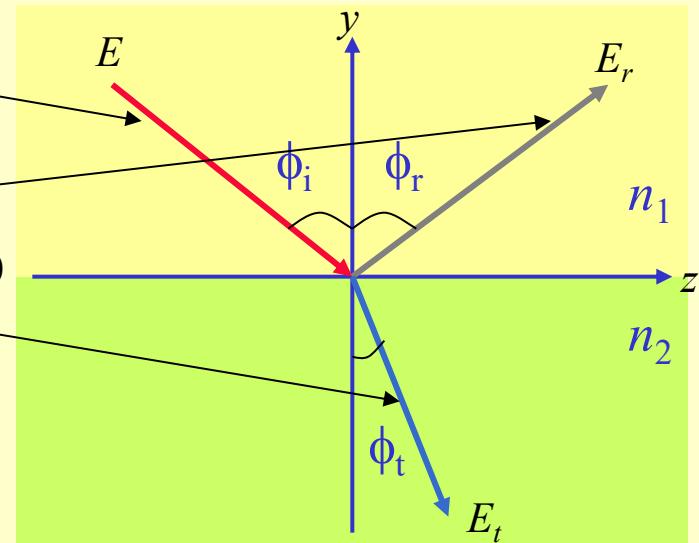
$$E = E_0(z, \phi) e^{j(\omega t - \beta z)}$$

Reflected wave

$$E_r = E_{0r}(z, \phi) e^{j(\omega_r t - \beta_r z)}$$

Transmitted wave $E_t = E_{0t}(z, \phi) e^{j(\omega_t t - \beta_t z)}$

Note, phases of the three waves, which are independent of z, t , must be equal, i.e.,:



$$n_1 < n_2$$

$$(\omega t - \beta z) = (\omega_r t - \beta_r z) = (\omega_t t - \beta_t z)$$

At the boundary point i.e., $z = 0$, we have: $\omega t = \omega_r t = \omega_t t$

Or

$$\omega = \omega_r = \omega_t$$

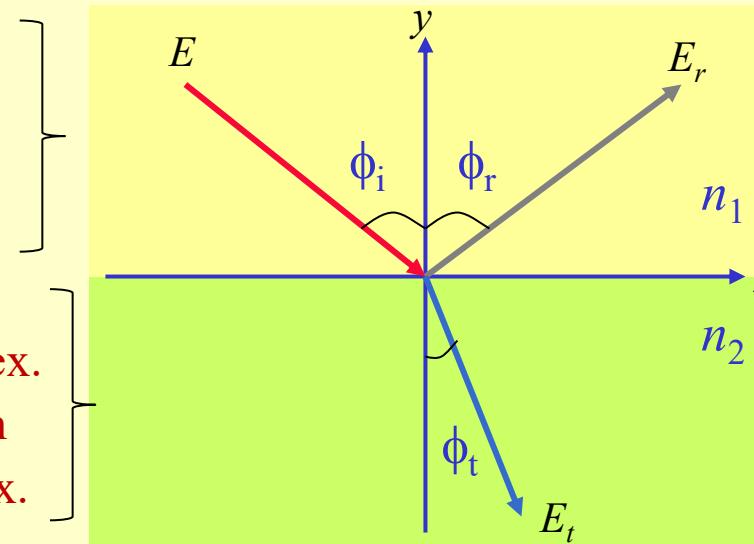
Properties of Light

Law of Reflection

- External reflection: $n_1 < n_2$
- External reflection: $n_1 > n_2$

Law of Refraction -

- Light beam is bent towards the normal when passing into a medium of higher refractive index.
- Light beam is bent away from the normal when passing into a medium of lower refractive index.



Index of Refraction

- $n = \text{Speed of light in a vacuum} / \text{Speed of light in a medium}$

Inverse square law

- Light intensity diminishes with the square of distance (d^2) from the source.

Law of Reflection

Considering at time $t = 0$ within the boundary plane, we have

$$-\beta z = -\beta_r z = -\beta_t z$$

With the reflected and refracted waves being in the plane of incident, and if

$$\beta z = \beta_r z$$

Then we have

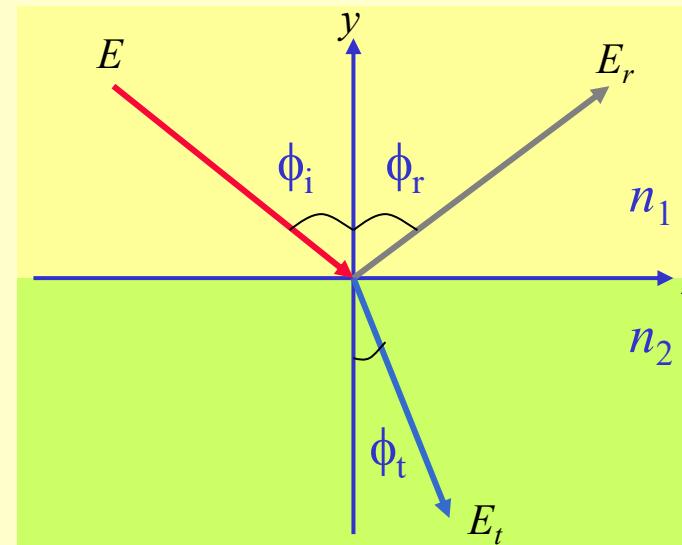
$$\beta z \sin\phi_i = \beta_r z \sin\phi_r$$

Note that, both waves are travelling in the same medium. Therefore have identical wavelength, so

$$\beta = \beta_r$$

Thus

$$\phi_i = \phi_r$$



Incident angle = Reflection angle

Law of Refraction

Similarly, we have

$$\beta \mathbf{z} = \beta_t \mathbf{z}$$

Then we have

$$\beta z \sin\phi_i = \beta_t z \sin\phi_t$$

So we have

$$\beta = \frac{\omega}{v_p} = \frac{n_1}{c} \omega$$

$$\beta_t = \frac{\omega}{v_{pt}} = \frac{n_2}{c} \omega$$

One Dimensional EM Wave – Boundary Conditions

It applies to the instantaneous values of the fields at the boundary.

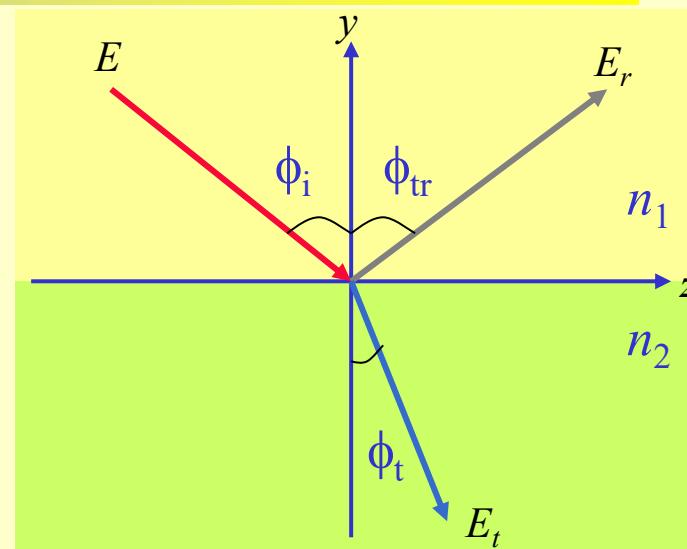
Note that

$$E = v_p H = (c/n)H$$

In each medium, we can write the following equations, assuming that $\phi_i = \phi_r$

TE:
$$\begin{cases} E + E_r = E_t \\ n_1 E \cos\phi_i - n_1 E_r \cos\phi_i = n_2 E_t \cos\phi_t \end{cases}$$

TM:
$$\begin{cases} n_1 E + n_1 E_r = n_2 E_t \\ E \cos\phi_i - E_r \cos\phi_i = E_t \cos\phi_t \end{cases}$$



Reflectance and Transmission

The reflection and transmission coefficients:

$$\rho_r = \frac{E_r}{E} \quad \text{and} \quad \rho_t = \frac{E_t}{E}$$

Reflectance – Is the fraction of the power P in the incident wave that is reflected

$$R = \frac{P_r}{P} = \left(\frac{E_r}{E} \right)^2 = \rho_r^2$$

Transmittance – Is the fraction of the power P in the incident wave that is transmitted

$$T = \frac{P_t}{P} = 1 - R \frac{n_2}{n_1} \left(\frac{\cos \phi_t}{\cos \phi_i} \right) \rho_t^2$$

Phase Changes

External Reflection

Note, in certain cases we have:

$$E_r = -|\rho_r|E$$

I.e., a phase change of π

$$E_r = e^{j\pi} E_{0r}(z, \phi) e^{j(\omega_r t - \beta_r z)}$$

$$E_r = E_{0r}(z, \phi) e^{j(\omega_r t - \beta_r z - \pi)}$$

TE: Phase change takes place for any angle of incidence

TM: Phase change occurs for $\phi_i > \phi_B$, where ϕ_B is the Brewster angle

Phase Changes

Internal Reflection

- For $0 < \phi_i < \phi_c$
 - TE: No phase change
 - TM: Phase change of π for $\phi_i < \phi_B'$
- For $\phi_i > \phi_c$
 - TE: The phase change

$$\Delta\phi = -2\tan^{-1} \left\{ \frac{\sqrt{\sin^2\phi_i - n^2}}{\cos\phi_i} \right\}, \text{ where } n = n_2/n_1$$

- TM: The phase change

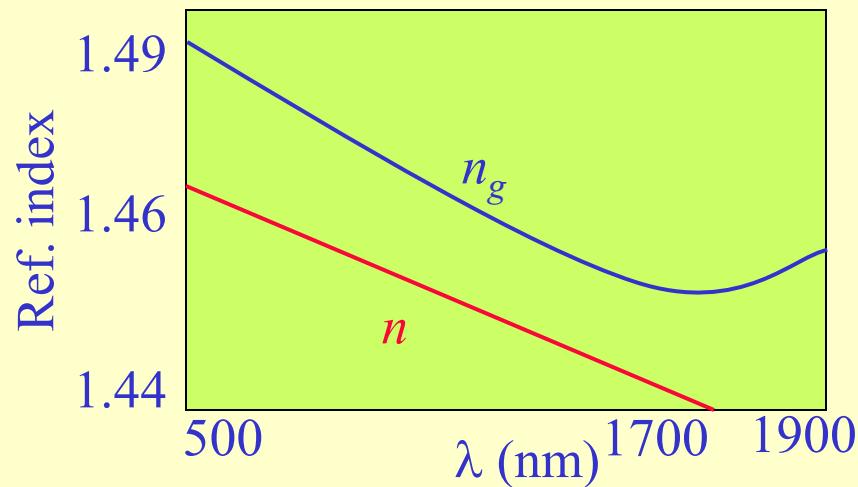
$$\Delta\phi = -2\tan^{-1} \left\{ \frac{\sqrt{\sin^2\phi_i - n^2}}{n^2 \cos\phi_i} \right\}, \text{ where } n = n_2/n_1$$

Group Velocity

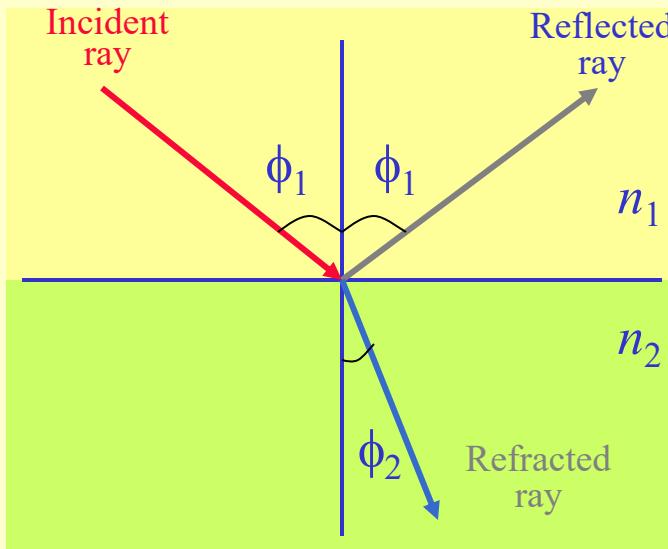
- A pure single frequency EM wave propagate through a wave guide at a
Phase velocity $v_p = c / n$
- However, non-monochromatic waves travelling together will have a velocity known as **Group Velocity** $v_g = c / n_g$

Where the fibre group index is:

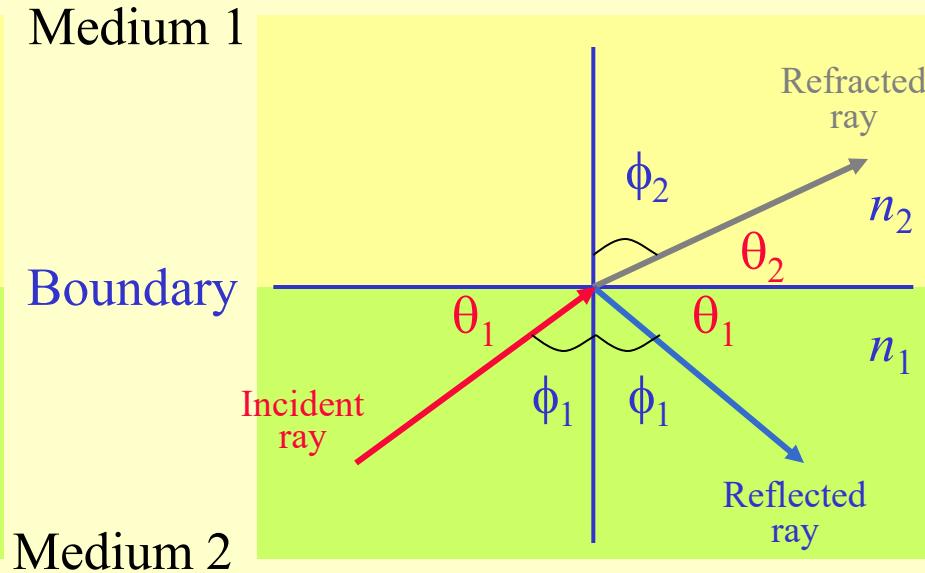
$$n_g = n - \lambda \frac{dn}{d\lambda}$$



Reflection and Refraction of Light



$$n_1 < n_2$$



$$n_1 > n_2$$

Using the **Snell's law** at the boundary we have:

$$n_1 \sin \phi_1 = n_2 \sin \phi_2$$

or

$$n_1 \cos \theta_1 = n_2 \cos \theta_2$$

ϕ_1 = The angle of incident

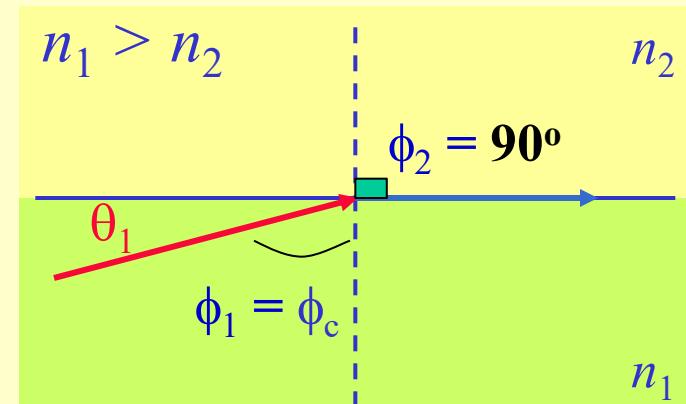
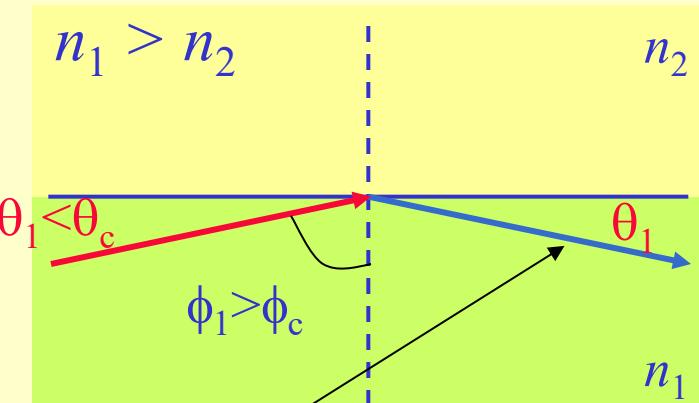
Total Internal Reflection

- As ϕ_1 increases (or θ_1 decreases) the reflected ray approaches the boundary
- At $\phi_1 = \text{Critical Angle } \phi_c$, there is no reflection

So, for $\phi_2 = 90^\circ$ (or $\theta_2 = 0^\circ$)

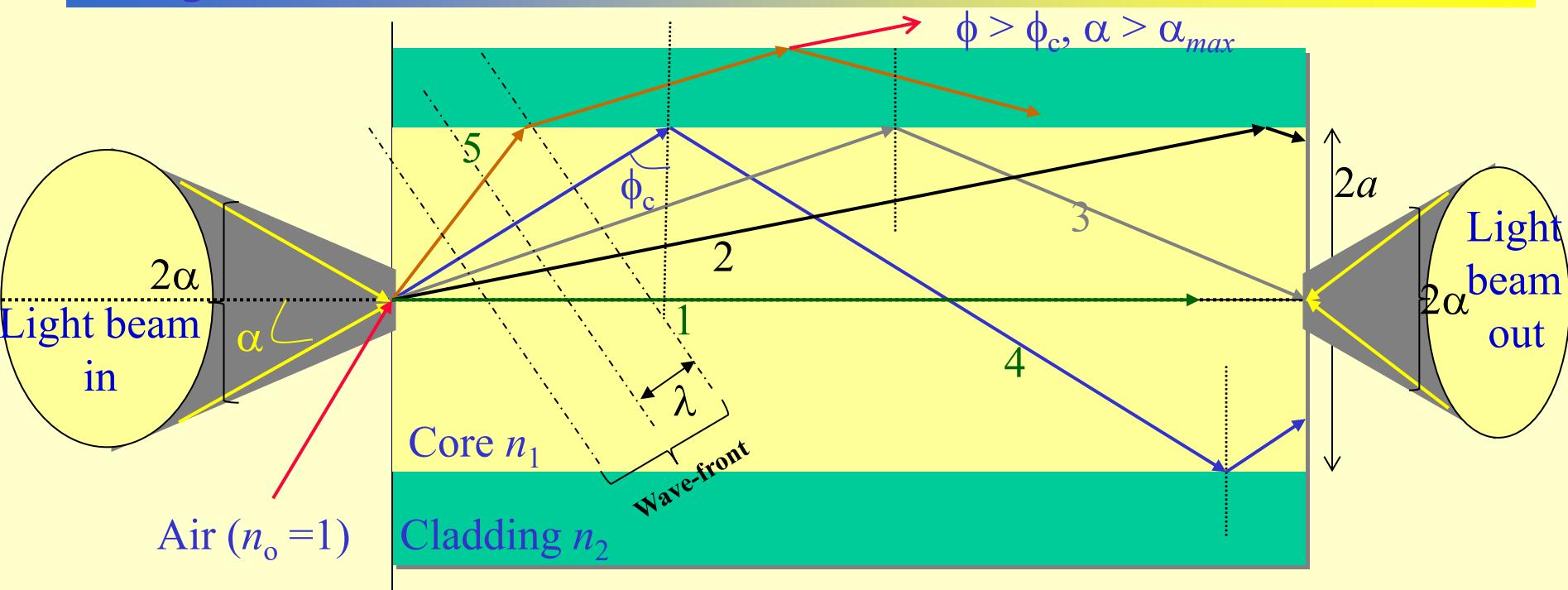
$$n_1 \sin \phi_1 = n_2 \sin 90^\circ$$

Thus, the critical angle $\phi_c = \sin^{-1} \left(\frac{n_2}{n_1} \right)$



Beyond the critical angle ($\phi_1 > \phi_c$), light ray becomes **totally internally reflected**

Ray Propagation in Fibre - *Bound Rays*



At high frequencies f , since

- $a >$ light wavelength λ , light launched into the fibre core would propagate as plane TEM wave with $v_p = \omega/\beta_1$
- $a < \lambda$, light launched into the fibre will propagate within the cladding, thus unbounded and unguided plane TEM wave with $v_p = \omega/\beta_2$

Therefore, we have $n_2 k_0 = \beta_2 < \beta < \beta_1 = n_1 k_0$

Ray Propagation in Fibre - contd.

From Snell's Law:

$$n_0 \sin \alpha = n_1 \sin (90 - \phi)$$

$\alpha = \alpha_{max}$ when $\phi = \phi_c$

Thus, $n_0 \sin \alpha_{max} = n_1 \cos \phi_c$
 $\sin^2 x + \cos^2 x = 1$

Or

$$n_0 \sin \alpha_{max} = n_1 (1 - \sin^2 \phi_c)^{0.5}$$

Since $\phi_c = \sin^{-1} \left(\frac{n_2}{n_1} \right)$

Then $n_0 \sin \alpha_{max} = n_1 \left[1 - \left(\frac{n_2}{n_1} \right)^2 \right]^{0.5} = [n_1^2 - n_2^2]^{0.5}$
 $= [n_1^2 - n_2^2]^{0.5} = \text{Numerical Aperture (NA)}$

Therefore $n_0 \sin \alpha_{max} = \text{NA}$

$$\alpha_{max} = \sin^{-1} \left(\frac{\text{NA}}{n_0} \right)$$

Fibre acceptance angle

Ray Propagation in Fibre - contd.

Note $\frac{n_1 - n_2}{n_1} = \Delta$ Relative refractive index difference

Thus $NA = n_1(2\Delta)^{0.5}$ $0.14 < NA < 1$

NA determines the light gathering
capabilities of the fibre

Modes (Paths) in Fibre

- A fiber can support:
 - many modes (multi-mode fibre).
 - a single mode (single mode fibre).
- For the mode to propagate we must have

$$(4a \cos\phi_i) \frac{2\pi n_1}{\lambda_0} + 2\Delta\phi = 2m\pi$$

The total phase change

where m is an integer

Or

$$\frac{4a\pi n_1 \cos\phi_i}{\lambda_0} + \Delta\phi = m\pi$$

- For each value of m there will a corresponding value of ϕ_i , namely ϕ_m , that satisfies this equation.
- The dependence of $\Delta\phi$ at reflection on ϕ is such that we cannot obtain an explicit expression for ϕ in terms of m . **So the equation must be solved either numerically or graphically.**

Modes in Fibre

Let's rewrite the equation as:

$$\frac{4a\pi n_1 \cos\phi_i}{\lambda_0} = m\pi - \Delta\phi$$

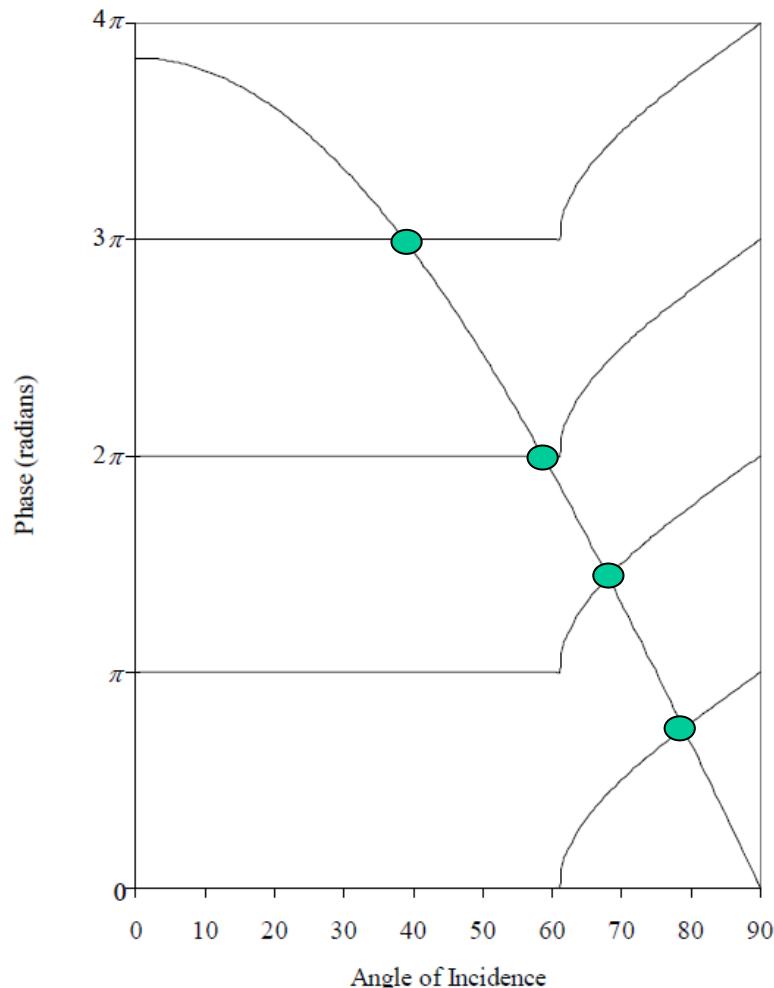
The intersection of the two curve of

$$y = \frac{4a\pi n_1 \cos\phi_i}{\lambda_0} \quad \text{and} \quad y = m\pi - \Delta\phi$$

defines the values of ϕ for which the modes propagates along the waveguide.

Note that, we are only interested in $\phi < \phi_c$.

Graphical solution for a symmetric planar waveguide with $n_1 = 1.6$, $n_2 = 1.4$, $d = 600$ nm and $\lambda_0 = 500$ nm



Modes in Fibre

- Both TE_m and TM_m modes will be cut-off when

$$\frac{4a\pi n_1 \cos\phi_i}{\lambda_0} = m\pi$$

Note,

$$\cos\phi_c = (1 - \sin^2\phi_c)^{0.5} = (1 - (n_2/n_1)^2)^{0.5}$$

$$\frac{4a\pi n_1}{\lambda_0} \left[1 - \left(\frac{n_2}{n_1} \right)^2 \right]^{0.5} = m\pi$$

Or

$$V = \frac{m\pi}{4}$$

V Parameter

Modes in Fibre

- **V Parameter** - The number of modes [also known as the normalised frequency] supported in a fiber, which is determined by the **indices, operating wavelength** and the **diameter of the core**, given as:

$$V = \frac{a\pi n_1}{\lambda_0} \left[1 - \left(\frac{n_2}{n_1} \right)^2 \right]^{0.5}$$

or

$$V = \frac{\pi a}{\lambda_0} NA$$

Note, a mode remains guided provided the following is satisfied

$$n_2 k_0 = \beta_2 < \beta < \beta_1 = n_1 k_0$$

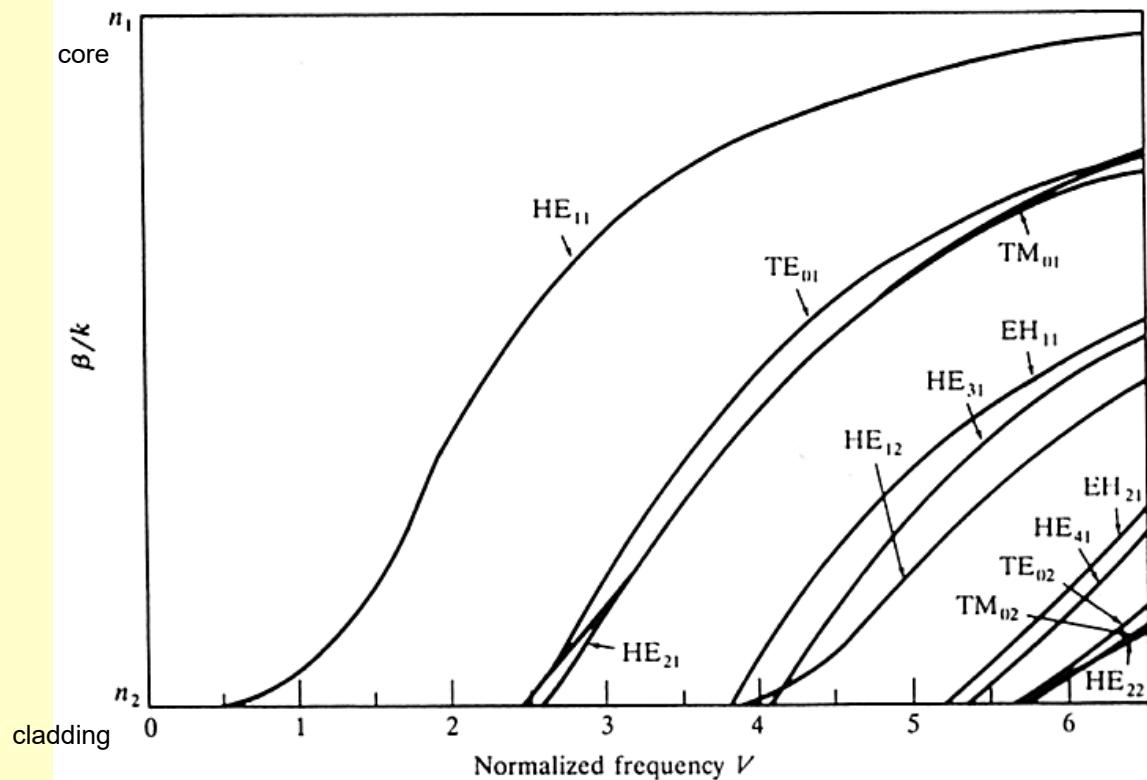
Modes in Fibre

- The number of TE or TM modes propagating is given by:

$$N_m = 1 + \text{INT}(2V/\pi)$$

- For $V < \pi/2$, $N_m = 1$, i.e., only one mode ($m = 0$, the lowest order) will propagate. **In practice there will be two modes of TE₀ and TM₀.**
- **$V < 2.405$ - Corresponds to a single mode fiber.**
- By reducing the radius of the fiber, V goes down, and it becomes impossible to reach a point when only a **single mode** can be supported.

Modes in Fibre



$$n_2 k = k_2 \leq \beta \leq k_1 = n_1 k,$$
$$k = 2\pi / \lambda_0$$

$$\mathbf{E} \square \exp(j\omega t - \beta z)$$

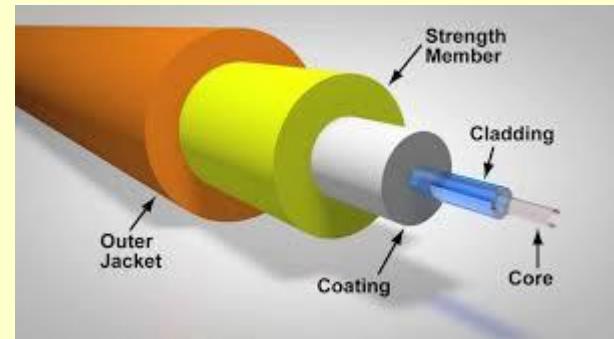
Modes in Fibre

Problem: Consider a symmetric planar dielectric waveguide of 100 μm thick with core and cladding refractive indices of 1.54 and 1.5, respectively. Determine the number of possible modes at a operating wavelength of 1300 nm.

Solution:

Basic Fibre Properties

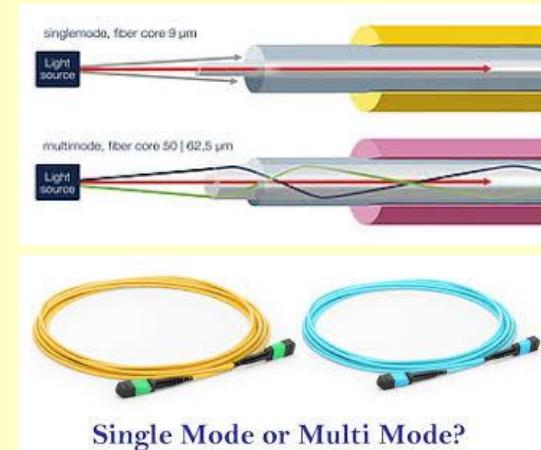
- Cylindrical
- Dielectric
- Waveguide
- Low loss
- Usually fused silica
- Core refractive index > cladding refractive index
- Operation is based on **total internal reflection**



Types of Fibre

There are two main fibre types:

- **Step index:**
 - Multi-mode
 - Single mode
- **Graded index multi-mode**



Total number of guided modes M for multi-mode fibres:

$$\text{Multi-mode SI} \quad M = 0.5V^2$$

$$\text{Multi-mode GI} \quad M \approx 0.25V^2$$

$$\text{SMSI} \quad V < 2.405$$

Step-index Multi-mode Fibre



Advantages:

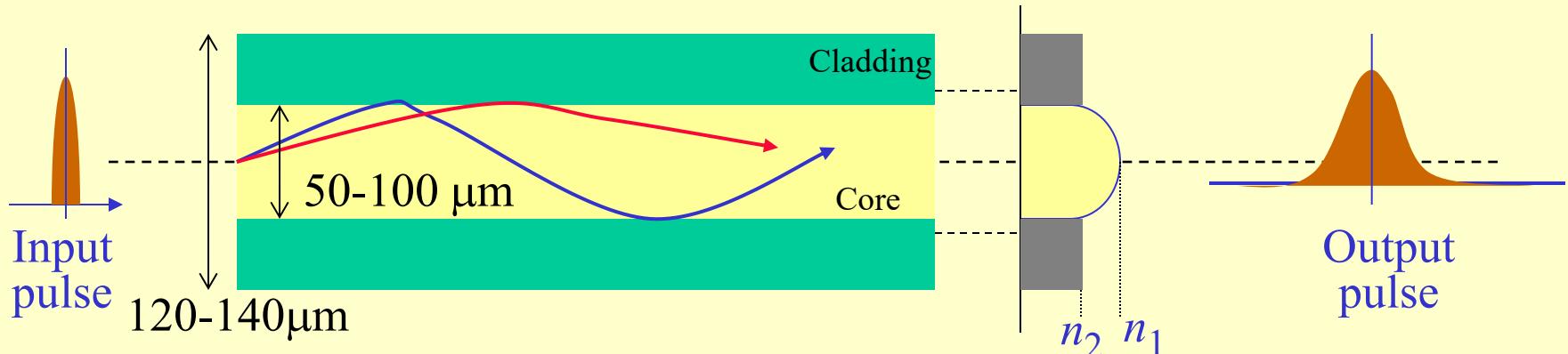
$$dn = 0.04, 100 \text{ ns/km}$$

- Use of non-coherent optical light source, e.g., LED's
- Easy to connect similar fibres
- Lower tolerance requirements on fibre connectors.
- Cost effective

Disadvantages:

- Suffer from dispersion (i.e., low bandwidth (a few MHz))
- High power loss

Graded-index Multi-mode Fibre



Advantages:

$$dn = 0.04, 1 \text{ ns/km}$$

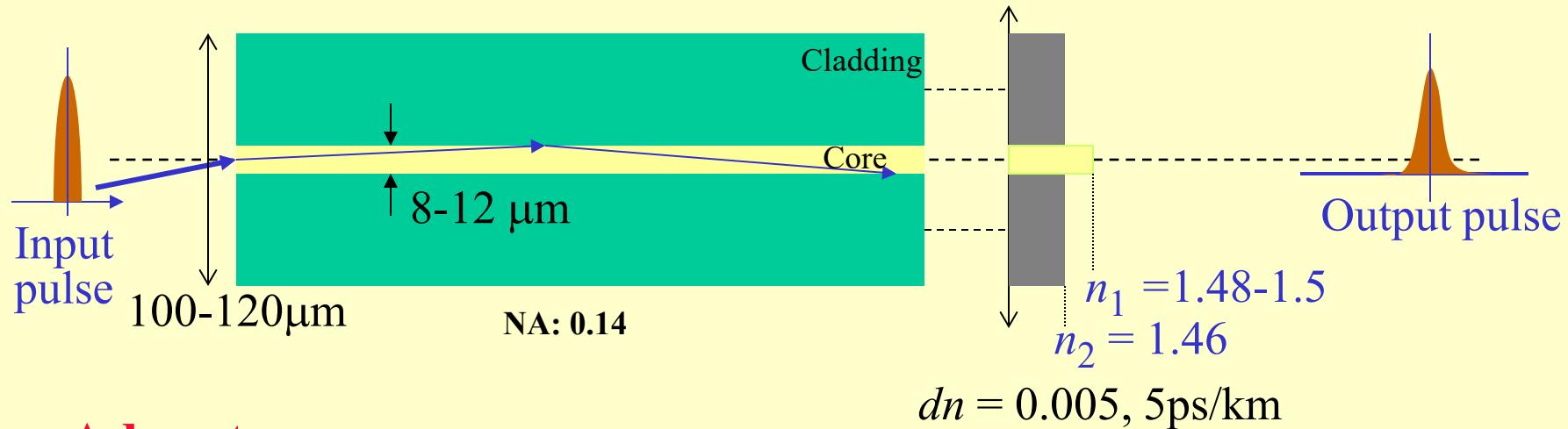
- Use of non-coherent optical light source, e.g. LED's
- Facilitates connecting similar fibres
- Imposes lower tolerance requirements on fibre connectors.
- Reduced dispersion compared with STMMF

Disadvantages:

- Lower bandwidth
- High power loss

Compared with STSMF

Step-index Single-mode Fibre



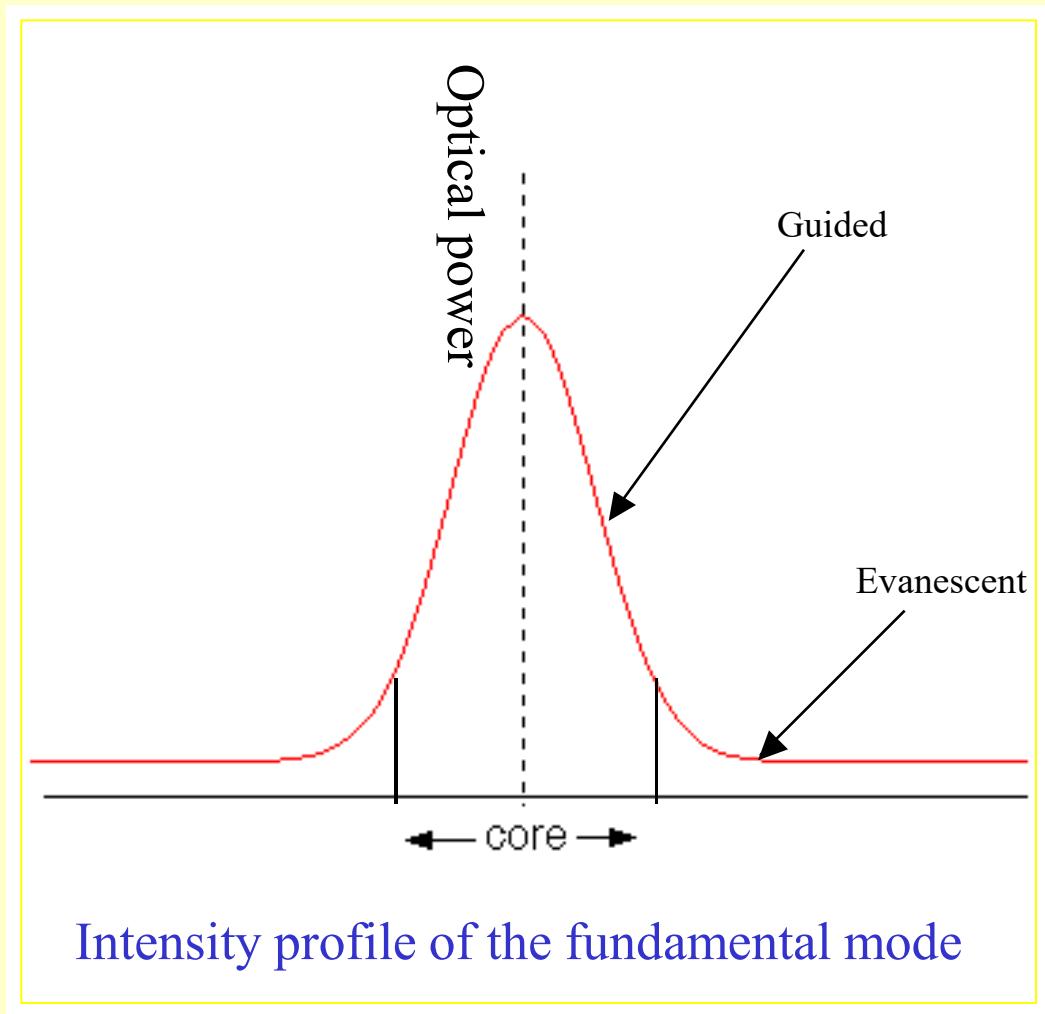
Advantages:

- Only one mode is allowed due to diffraction/interference effects.
- Use high power laser sources
- Facilitates fusion splicing similar fibres
- **Low dispersion, therefore high bandwidth (a few GHz).**
- Low loss (0.1 dB/km)

Disadvantages:

- Cost

Single Mode Fiber - Power Distribution



Fibre Characteristics

- The most important characteristics that limit the transmission capabilities are:
 - Attenuation (loss)
 - Dispersion (pulse spreading)

Attenuation (Loss) - *contd.*

The output power $P_o (L) = P_i (0) \cdot e^{-\alpha_f L}$

Fibre attenuation coefficient

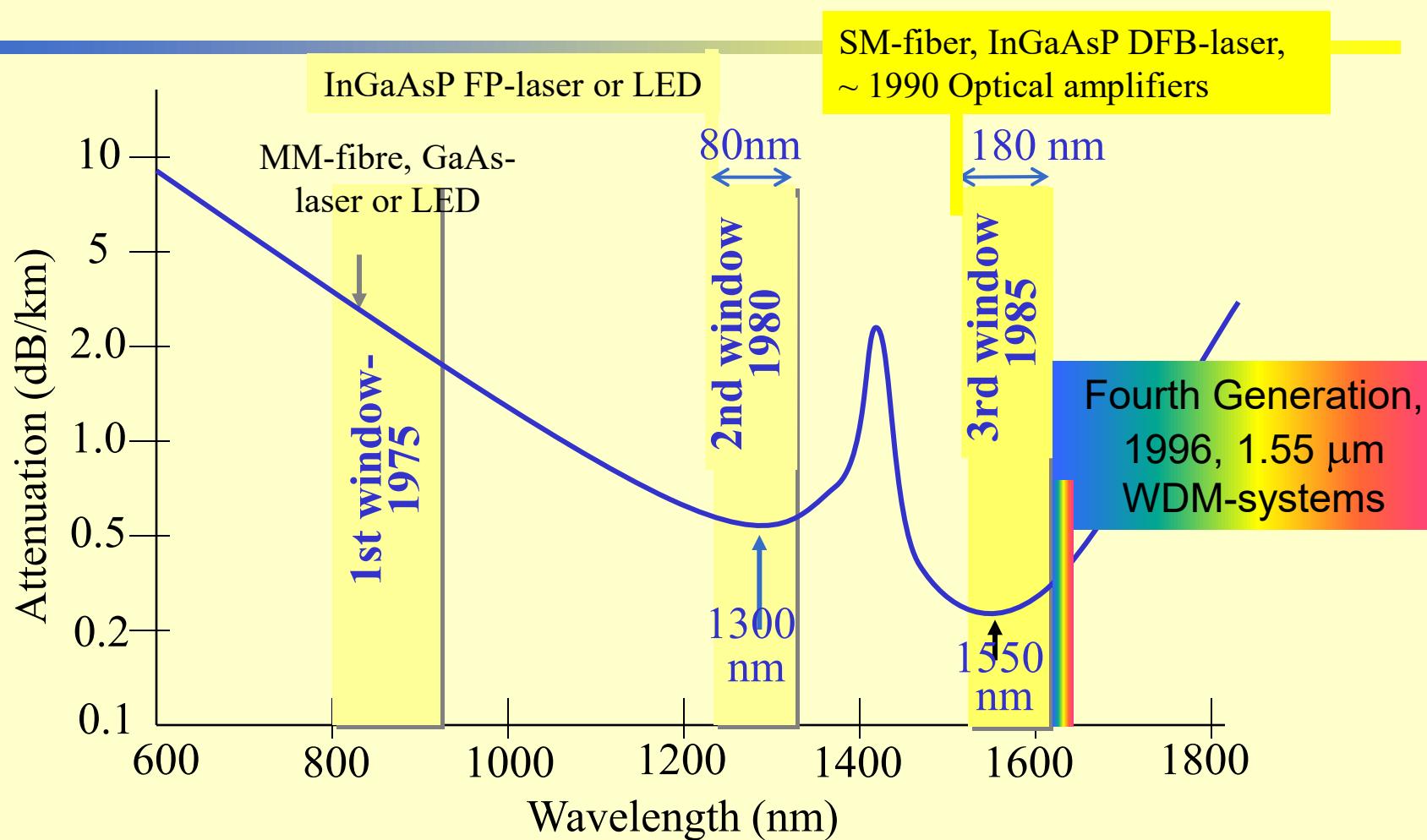
$$\alpha_f = \frac{1}{L} \ln \left(\frac{P_o}{P_i} \right) \quad \text{km}^{-1}$$

$$(\alpha_f = \alpha_{\text{scattering}} + \alpha_{\text{absorption}} + \alpha_{\text{bending}})$$

However, it is common to express fibre attenuation coefficient in dB/km:

$$\alpha_f = \frac{10}{L} \log \left(\frac{P_o}{P_i} \right) = 4.43 \alpha_f \quad (\text{km}^{-1})$$

Attenuation - Standard Fibre

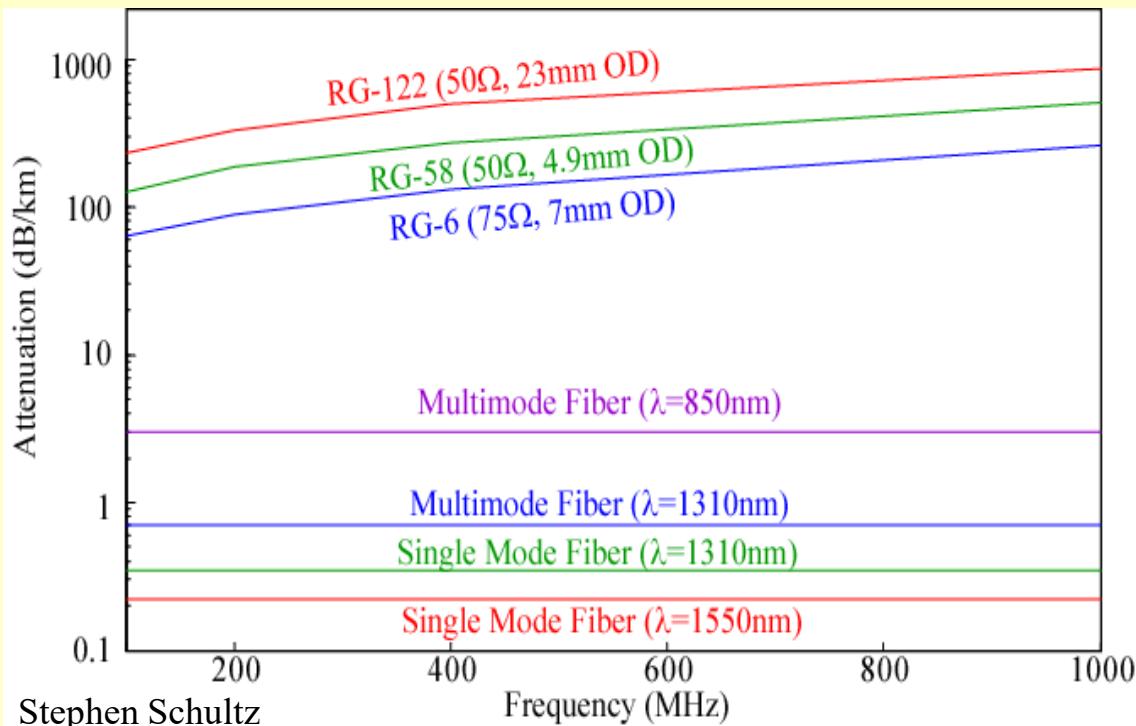


$$\text{Bandwidth } \Delta f = \frac{c}{\lambda^2} \Delta \lambda = 1.142 \times 10^{14} \text{ Hz} |_{\lambda 1300 \text{ nm}} + 2.2475 \times 10^{14} \text{ Hz} |_{\lambda 1550 \text{ nm}}$$

Fibre Attenuation - *contd.*

- In a typical system, the total loss could be **20-30 dB**, before it needs amplification.

So, at 0.2 dB/km, this corresponds to a distance of **100-150 km**.



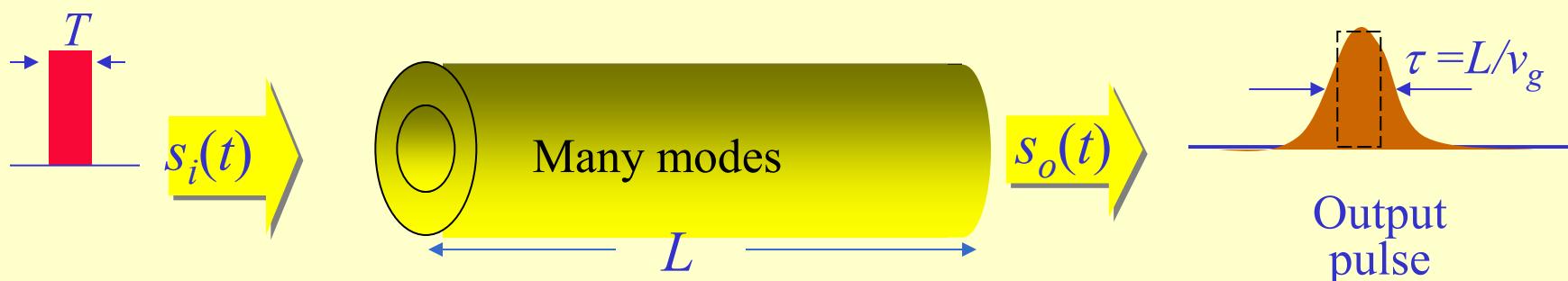
Attenuation along the fibre link can be measured using **Optical Time Domain Reflectometer**

Fibre Attenuation - *contd.*

- Bending loss
 - Radiation loss at bends in the optical fiber
 - Insignificant unless $R < 1\text{mm}$
 - Larger radius of curvature becomes more significant if there are accumulated bending losses over a long distance
- Coupling and splicing loss
 - Misalignment of core centers
 - Tilt
 - Air gaps
 - End face reflections
 - Mode mismatches

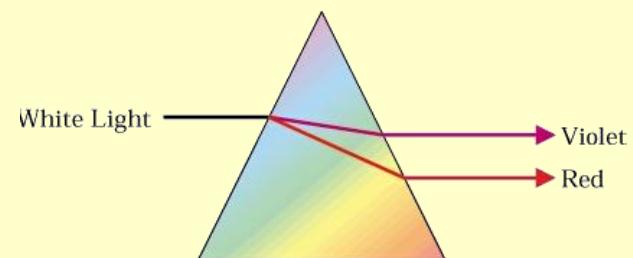
Fibre Dispersion

- Digital data carried composed of a large number of frequencies travelling at a given rate.
- There is a limit to the highest data rate (frequency) that can be sent down a fibre and be expected to emerge intact at the output.
 - Because of a phenomenon known as **Dispersion** (pulse spreading), which limits the "**Bandwidth**" of the fibre.



Cause of Dispersion:

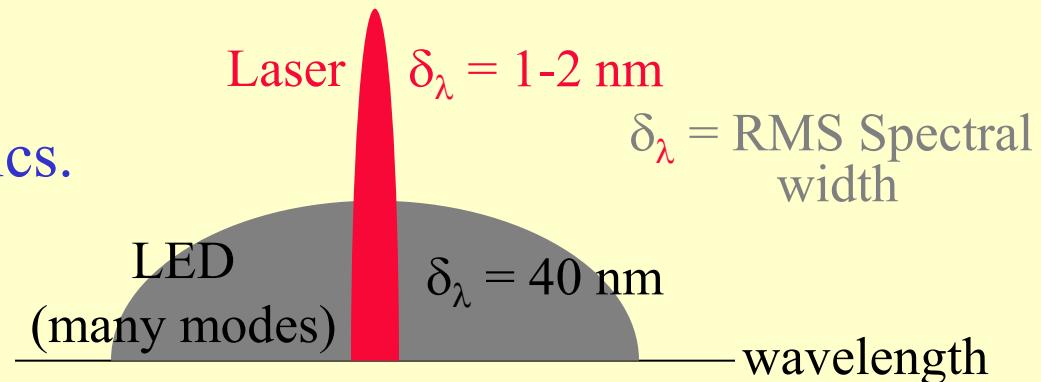
- Chromatic (intramodal) dispersion
- Modal (intermodal) dispersion



Chromatic (Intramodal) Dispersion

- Since $v_g = f(\lambda)$, then in any given mode, different spectral components of a pulse is traveling through the fibre at different speed.

- It depends on the light source spectral characteristics.



- May occur in all fibre, **but is the dominant in single mode fibre.**
- **Main causes:**
 - Material dispersion - different wavelengths \Rightarrow different speeds
 - Waveguide dispersion: different wavelengths \Rightarrow different angles

CD - Material Dispersion

- In intensity modulated light sources, all modes are excited equally at the input to the fibre:
 - Each mode:
 - carry the same amount of information
 - contains all the spectral components in the fibre
 - Each spectral component@
 - is modulated in the same way
 - travel independently and undergo a time delay (or a group delay) per unit length as it propagates along the fibre.

$$v_g = \frac{d\omega}{d\beta} = \frac{d(2\pi f)}{d\left(\frac{2\pi}{\lambda}\right)} = \frac{d\omega}{df} \times \frac{df}{d\lambda} \times \frac{d\lambda}{d\beta}$$

$$v_g = 2\pi \times \frac{df}{d\lambda} \times \left(-\frac{\lambda^2}{2\pi} \right) = -\lambda^2 \frac{df}{d\lambda}$$

Note: the vacuum wavelength $\lambda_0 = n \lambda$

Material Dispersion

So we can re-write the group velocity as:

$$v_g = -\frac{\lambda_0^2}{n^2} \left(\frac{df}{d\lambda_0} \times \frac{d\lambda_0}{d\lambda} \right) = -\frac{\lambda_0^2}{n^2} \left(\frac{c}{\lambda_0^2} \div \frac{d\lambda}{d\lambda_0} \right)$$

$$v_g = \frac{c}{n^2} \left(\frac{n^2}{n - \lambda_0 dn/\lambda_0} \right) = \left(\frac{c}{n - \lambda_0 dn/\lambda_0} \right)$$

Given that the group index $n_g = \frac{c}{v_g}$.

Then we have

$$n_g = n - \lambda_0 \frac{dn}{d\lambda_0}$$

Due to material dispersion

The group delay over a transmission span of L is: $\tau_g = \frac{L}{v_g} = \frac{L}{c} \left(n - \lambda_0 \frac{dn}{d\lambda_0} \right)$

Material Dispersion

Note that $\tau_{mat} = \delta\lambda_0 \frac{d\tau_g}{d\lambda_0}$

If the wavelength spread is $\delta\lambda_0$, the we have
RMS pulse broadening

Most important

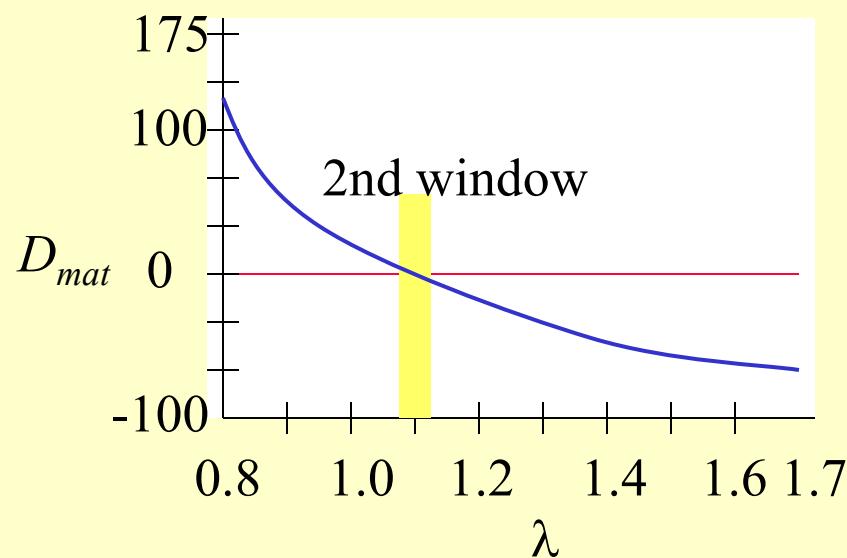
$$\tau_{mat} = -L\delta\lambda_0 \frac{\lambda_0}{c} \left| \frac{d^2 n}{d\lambda^2} \right| \text{ ns / km}$$

Where material dispersion coefficient:

$$D_{mat} = \frac{d}{d\lambda} \left(\frac{1}{v_g} \right)$$

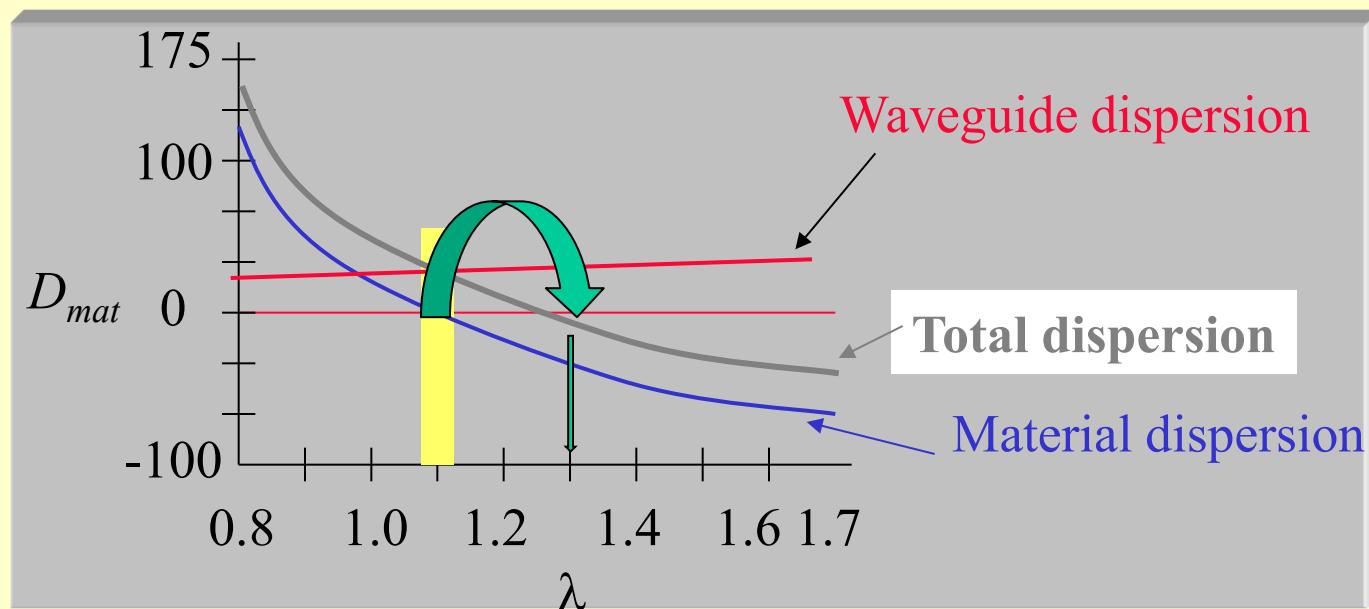
$$D_{mat} = -\frac{\lambda_0}{c} \frac{d^2 n}{d\lambda^2} \text{ ps / nm.km}$$

Note: Negative sign, indicates that low wavelength components arrives before higher wavelength components.

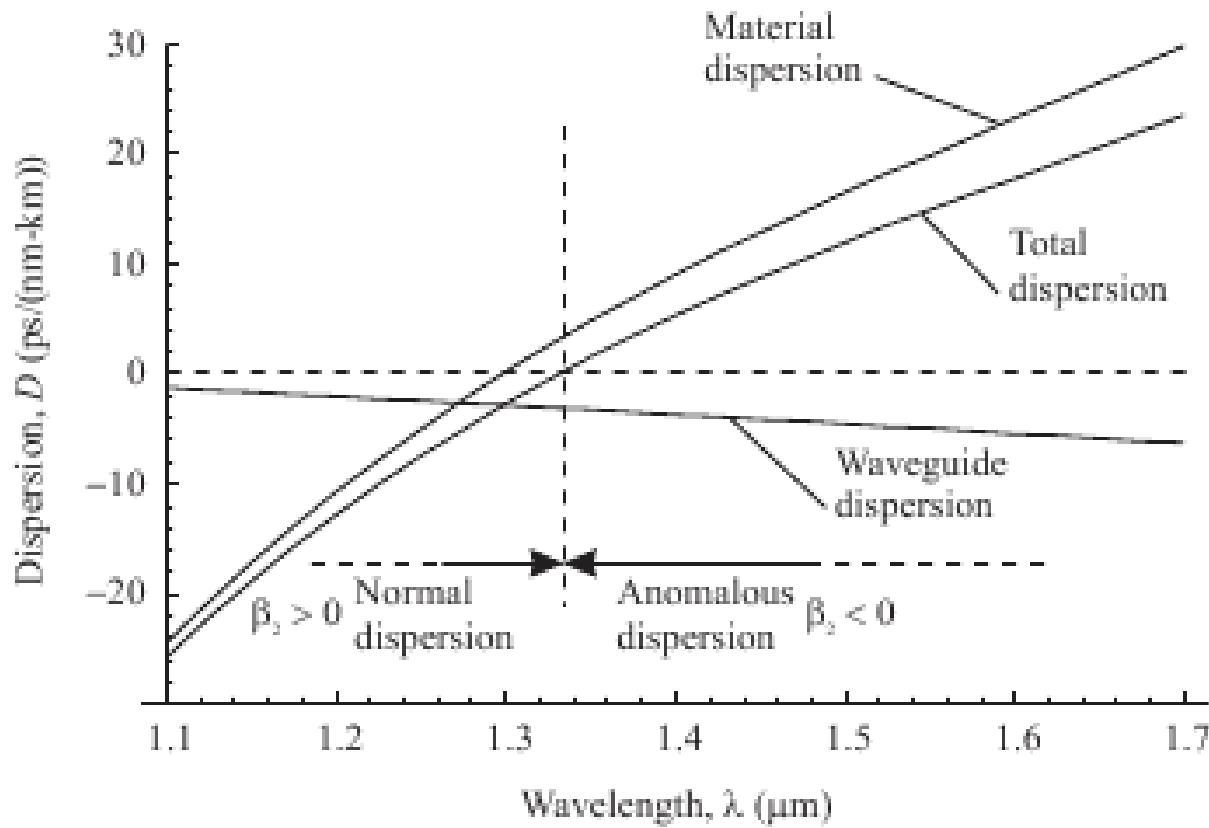


CD - Waveguide Dispersion

- This results from variation of the group velocity with wavelength for a particular mode. Depends on the size of the fibre.
- This can usually be ignored in multimode fibres, since it is very small compared with material dispersion.
- However it is significant in monomode fibres.

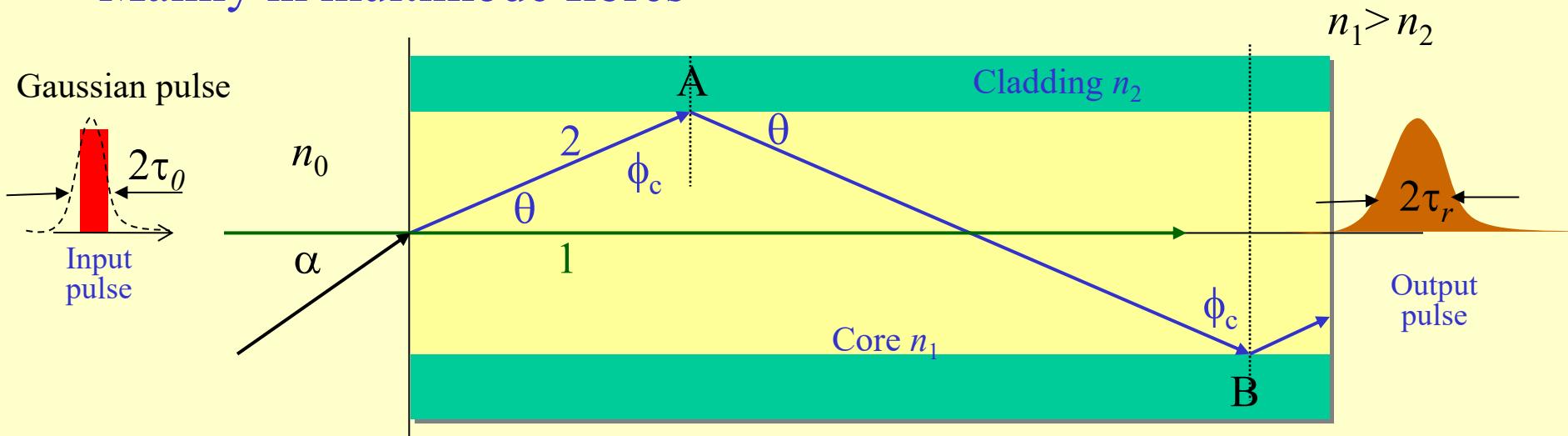


Chromatic (Intramodal) Dispersion



Modal (Intermodal) Dispersion

- Lower order modes travelling almost parallel to the centre line of the fibre cover the **shortest distance**, thus reaching the end of fibre sooner.
- The higher order modes (more zig-zag rays) take a **longer route** as they pass along the fibre and so reach the end of the fibre later.
- Mainly in multimode fibres



Modal Dispersion - SIMMF

The Gaussian pulse at the transmitter:

$$P(t, z = 0) = P_0 \exp \left[-\frac{2(t - t_0)^2}{\tau_0^2} \right]$$

The pulse at a distance z is:

$$P(t, z) = \frac{\tau_0}{\tau_r} P_0 \exp \left[-\frac{2(t - t_z)^2}{\tau_r^2} \right]$$

Now

$$\tau_r^2 = \tau_0^2 + \delta\tau^2$$

↳ Pulse broadening

Next, let's look at pulse broadening.

Modal Dispersion - SIMMF

The time taken for ray 1 to propagate a length of fibre L gives the minimum delay time:

$$t_{\min} = \frac{Ln_1}{c}$$

The time taken for the ray 2 to propagate a length of fibre L gives the maximum delay time:

$$t_{\max} = \frac{L/\cos\theta}{c/n_1}$$

Since $\sin\phi_c = \frac{n_2}{n_1} = \cos\theta$

The delay difference

$$\delta T_s = \delta\tau = t_{\max} - t_{\min} = \frac{n_1 L}{c} \left(\frac{n_1}{n_2} - 1 \right)$$

Note, the relationship between transmission bandwidth B_T and pulse broadening

$$\delta\tau < T_b \quad \text{where} \quad T_b \approx \frac{1}{B_T}$$

Therefore

$$\delta\tau B_T < 1 \Rightarrow B_T \frac{n_1 L}{c} \left(\frac{n_1}{n_2} - 1 \right) < 1 \Rightarrow B_T L < \left(\frac{n_2 c}{n_1 (n_1 - n_2)} \right)$$

Modal Dispersion - SIMMF

$$B_T L < \left(\frac{n_2 c}{n_1(n_1 - n_2)} \right)$$

So, for a given fibre with fixed n_1 and n_2 , Bandwidth Distance Product $B_T L$ is constant

So, what is the implication of this?

Lets' consider two scenarios:

S1: $n_1 = 1.5$, and $n_2 = 1$ (i.e., un-cladded fibre)

$B_T L < 0.4 \text{ Gb/s-m or } 0.4 \text{ Mb/s-km}$

S2: $n_1 = 1.5$, and $\Delta = 1\%$ (cladded fibre)

$B_T L < 20 \text{ Gb/s-m or } 1 \text{ Mb/s-20 km}$

So, small is Δ , the higher would be the data rate!
One more reason not to use un-cladded

Modal Dispersion - SIMMF

For $\Delta \ll 1$, $\Delta = \frac{(n_1 - n_2)}{n_2}$ and $NA = n_1(2\Delta)^{0.5}$

The delay difference

$$\delta T_s \approx \frac{L n_1^2}{c n_2} \Delta \quad \delta \tau = \delta T_s \approx \frac{L(NA)^2}{2c n_1}$$

For a rectangular input pulse, the RMS pulse broadening due to modal dispersion at the output of the fibre is:

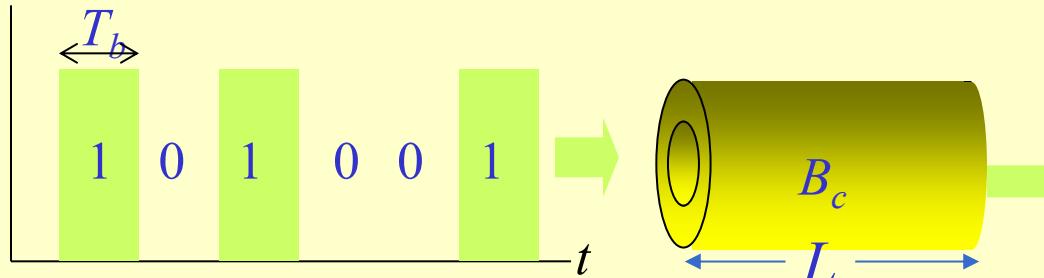
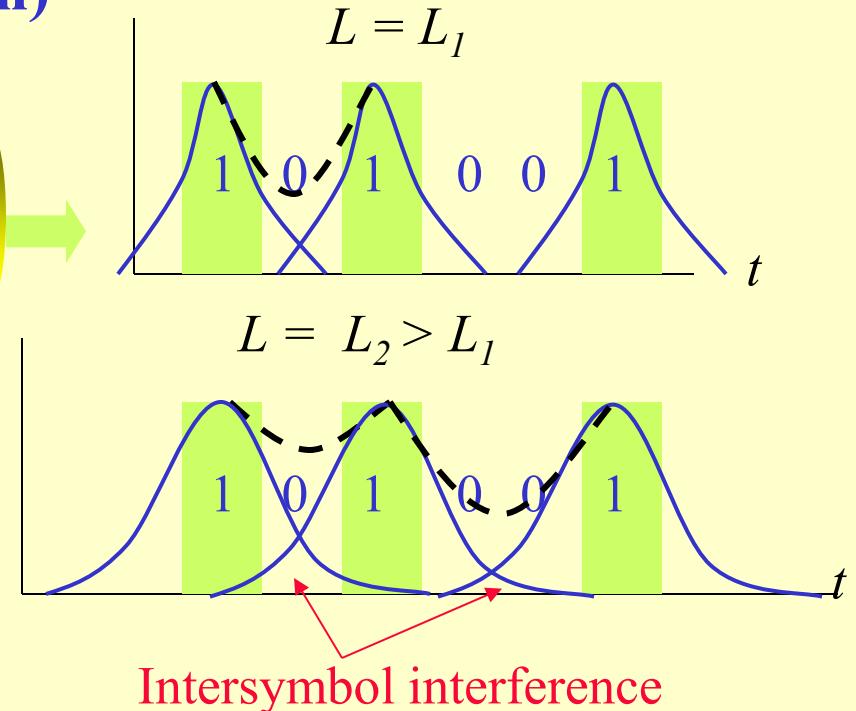
$$\tau_{\text{modal}} = \frac{L n_1 \Delta}{3.5 c} = \frac{L(NA)^2}{7 n_1 C}$$

Total dispersion = Chromatic dispersion + Modal dispersion

$$\tau_T = [\tau_{\text{chrom}}^2 + \tau_{\text{modal}}^2]^{1/2}$$

Dispersion - Consequences

I- Frequency Limitation (Bandwidth)



- **Maximum frequency limitation** of signal, which can be sent along a fibre
- **Intersymbol interference (ISI)**, which is unacceptable in digital systems which depend on the precise sequence of pulses.

II- Distance: A given length of fibre, has a maximum frequency (bandwidth), which can be sent along it. To increase the bandwidth for the same type of fibre one needs to decrease the length of the fibre.

Bandwidth Limitations

- Maximum channel bandwidth B_c :
 - For non-return-to-zero (NRZ) data format: $B_c = B_T/2$
 - For return-to-zero (RZ) data format: $B_c = B_T$
- For zero pulse overlap at the output of the fibre $B_T \leq 1/(2\tau_r)$ where τ_r is the pulse width.
For MMSF: $B_T (\text{max}) = 1/2\delta T_s$
- For a Gaussian shape pulse: $B_T \leq 0.2/\tau_{rms}$ where τ_{rms} is the RMS pulse width.
For MMSF: $B_T (\text{max}) = 0.2/\tau_{\text{modal}}$
or
 $B_T (\text{max}) = 0.2/\tau_T$ Total dispersion

Bandwidth Distance Product (BDP)

The BDP is the bandwidth of a kilometer of fibre, and is a constant for any particular type of fibre.

$$B_{opt} * L = B_T * L \quad (\text{MHz-km})$$

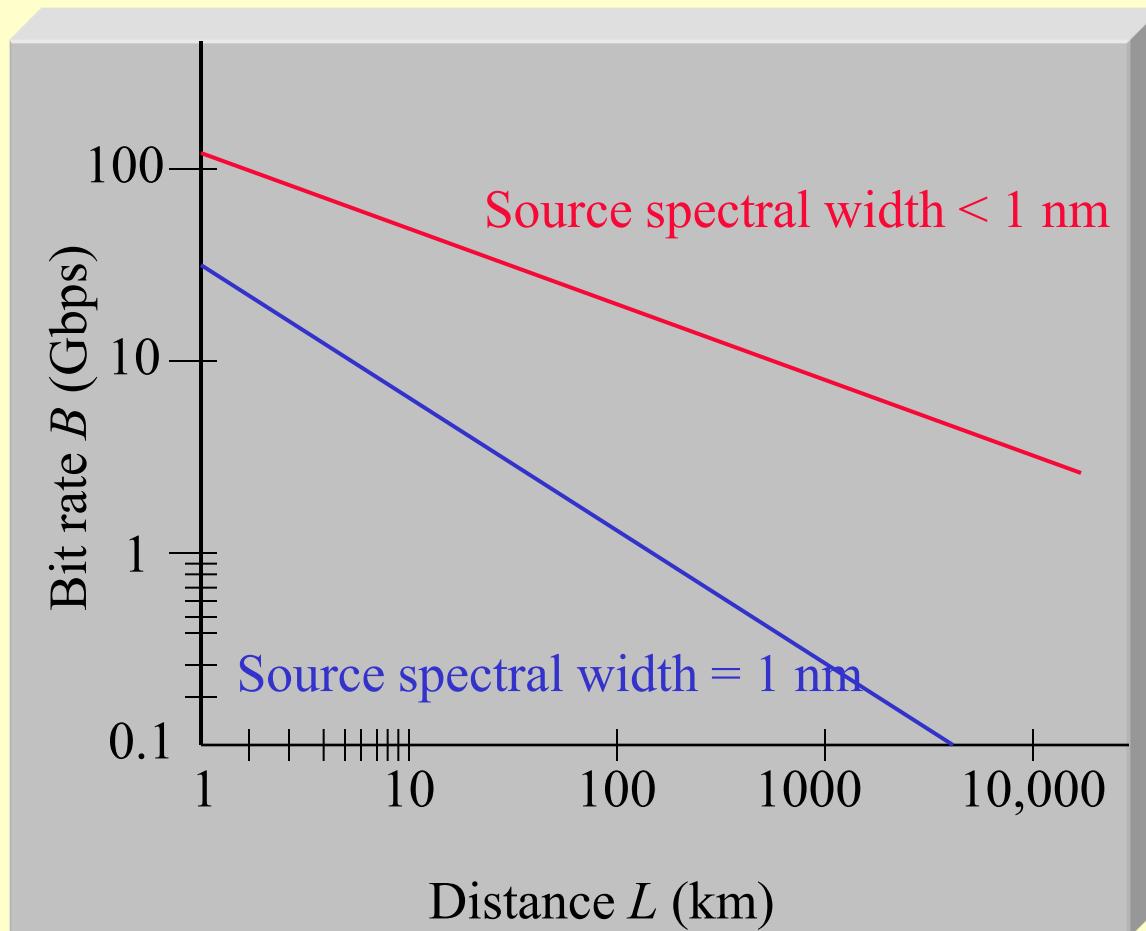
For example, A multimode fibre has a BDP of 20 MHz.km, then:-

- 1 km of the fibre would have a bandwidth of 20 MHz
- 2 km of the fibre would have a bandwidth of 10 MHz

Typical BDP for different types of fibres are:

- Multimode: 6 - 25 MHz.km
- Single Mode: 500 - 1500 MHz.km
- Graded Index: 100 - 1000 MHZ.km

Bandwidth Distance Product



$$D_{mat} = 17 \text{ ps/km.nm}$$

Controlling Modal Dispersion in SIMMF

Use Graded index MMF

- Shortest path with the lowest speed and longest path with higher speed (lower n_{core}).

Then

$$\delta\tau = \frac{n_2 L}{2c} \left(\frac{n_1}{n_2} - 1 \right)^2 \quad \text{and} \quad \delta T_s \approx \frac{L n_1 \Delta^2}{2c}$$

For n_2 1.45 and $\Delta = \frac{(n_1 - n_2)}{n_2} = 0.01$, $\delta\tau = 0.25$ ns/km

For SIMMF
 $\delta\tau = 50$ ns/km

- The RMS pulse broadening

$$\tau_{modal-GI} = \frac{L n_1 \Delta^2}{34.6 C}$$

Controlling Dispersion

For single mode fibre:

- Wavelength 1300:
 - Dispersion is very small
 - Loss is high compared to 1550 nm wavelength
- Wavelength 1550:
 - Dispersion is high compared with 1300 nm
 - Loss is low

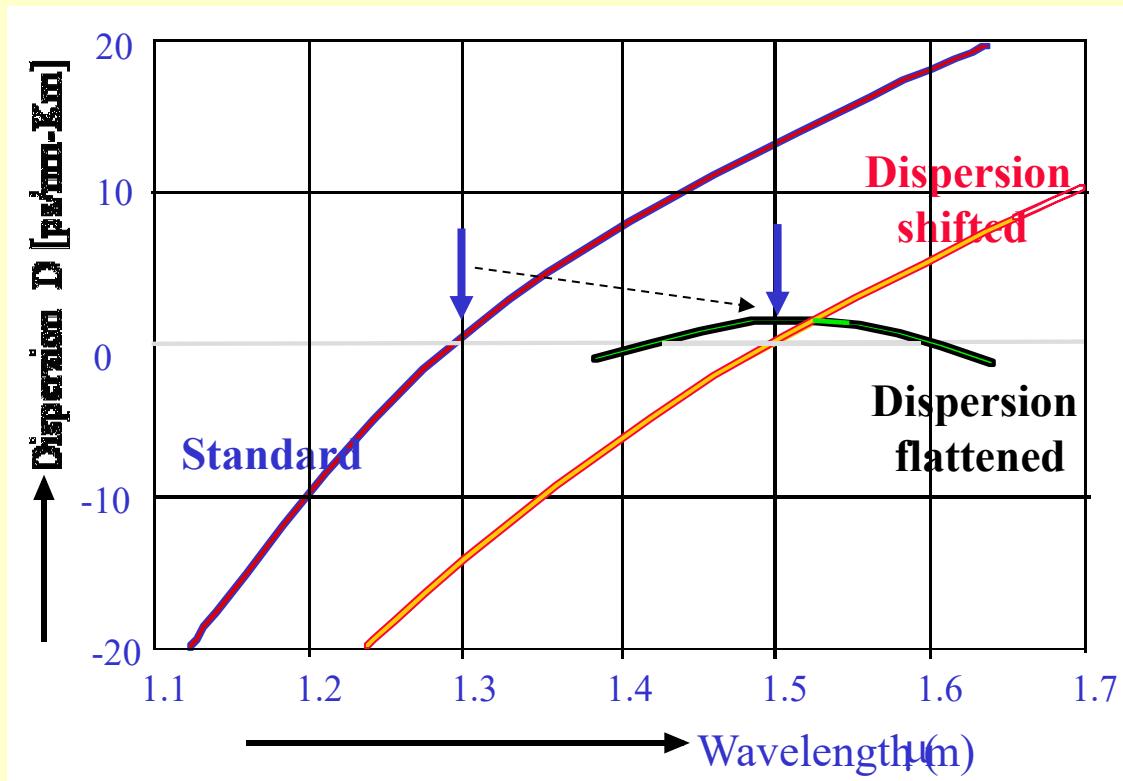
Limitation due to dispersion can be removed by moving zero-dispersion point from 1300 nm to 1550 nm. *How?*

By controlling the waveguide dispersion.

Fibre with this property are called Dispersion-Shifted Fibres

Controlling Dispersion

Dispersion-Shifted Fibre



Basic idea

- Change the refractive index profile in cladding and core
- Thus introducing negative dispersion

References

- <http://www.gatewayforindia.com/technology/opticalfiber.htm>
- Senior: <http://www.members.tripod.com/optic1999/>

Summary

- Nature of light : Particle and wave
- Light is part of EM spectrum
- Phase and group velocities
- Reflection, refraction and total internal reflection etc.
- Types of fibre
- Attenuation and dispersion