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Basic Questions

Transmitter:

▪ What will happen if the transmitter

-  changes the transmit power ?

-  changes the frequency ?

-  operates at higher speed ?
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Desert Metro Street Indoor

Channel:

What will happen if we conduct this experiment in different types of 

environments?

Receiver:

Q- What will happen if the receiver 

moves?
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Antenna - Concept

▪ Type of antenna

– Omnidirectional

– Sector

– Directional

▪ Aspect of antennas

– Gain/signal spread

– Reciprocity

– Range

– Mounting

▪ Signal is generated by electrons 

movement (i.e., oscillation) in a 

piece of metal (wire)

▪ Right-hand rule:

– Electrons moving in the direction of 

thumb is pointed, then a Magnetic field 

H (or B) is produced around the wire in 

the direction the fingers are pointed.

– Oscillating current (AC signal) will 

generated oscillating H
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Antenna - Concept

▪ Speed of 

electromagnetic waves

𝑐 =
1

𝜀𝑜𝜇𝑜
≈ 3.0 × 108 m/s

Where 𝜀o = 8.8542 1012 C2s2/kgm3   Permittivity of vacuum

 o = 4 10-7 kgm/A2s2/kgm3   Permeability of vacuum 

▪ Electromagnetic waves

𝐸 =  𝐸0 sin(𝑘𝑧 − 𝑤𝑡); and 𝐻 =  𝐻0 sin(𝑘𝑧 − 𝑤𝑡)

Where k = 2/

𝐸 =  𝐸0 sin[2/ 𝑧 − 𝑐𝑡 ]; and 𝐻 =  𝐻0 sin 2/[ 𝑧 − 𝑐𝑡 ]
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d

Antenna - Ideal

▪ Type of antenna: Omnidirectional; Sector and directional

▪ Isotropic antenna: In free space radiates power  equally in 

all direction. Not realizable physically

d
E

H

Pt

d

Area
• d = distance directly away from the    antenna.

•  = azimuth, or angle in the horizontal plane.

•  = zenith, or angle above the horizon.

The EM fields around a 

transmitting antenna

, i.e., a polar coordinate

Radiation pattern

𝐴𝑒−𝐼 =
2

4

B

Surface are S𝐴 = 4𝜋𝑑2

E.g., for 3 GHz, Ae-I = 8 cm2
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Antenna - contd.

Vs

Zs

Z0=Zs
I

dan < 

Transmission line

PtSome power is lost due to heating of antenna

▪ The area of     is: ∆𝐴 = 𝑑2 sin θ ∆θ∆∅

▪ The solid angle: δ = sin θ ∆θ∆∅ i.e., Normalised to d2.

▪ The time average power from antenna: 

՜
𝑆

= ՜
𝐸

× ՜
𝐻

𝑆
ave

= න

0

𝑇

՜
𝐸

× ՜
𝐻

𝜕𝑡

𝑆(𝑑, 𝜃, ∅) =
𝜇𝑜

𝜀𝑜

𝐼 𝑑𝑎𝑛𝑘 2

32(𝜋𝑑)2 sin2θ

X - Cross-product

Impedance of the free space
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Antenna - contd.

Total power radiated: 𝑃𝑡 = න
∅=0

2𝜋

න
𝜃=0

𝜋

𝑆(𝑑, 𝜃, ∅)∆𝐴

𝑃𝑡 = 𝑑2 න
∅=0

2𝜋

න
𝜃=0

𝜋

𝑆 𝑑, 𝜃, ∅ sinθ∆θ∆∅ Adding up all the small areas 

that make out the sphere.

Normalised radiation intensity: 𝐹 θ, ∅ =
𝑆 𝑑, θ, ∅

max 𝑆 𝑑, θ, ∅
= sin2θ

Note, Max of S is at =90o.

S()

S()

Linear scale Log scale

Less sensitive 

to small 

changes
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Antenna - contd.

The radiation efficiency defines how much of the power that drives the 
antenna actually radiates into the space:

where Pt is the transmit (radiated) power and Ptotal is the total power derived with

 =
𝑃𝑡

𝑃𝑡𝑜𝑡𝑎𝑙

Directivity of an antenna: Indication of the antenna radiation directionality:

𝐷𝑎𝑛 =
max{𝐹 θ, ∅ }

mean 𝐹 θ, ∅
=

max{𝑆 𝑑, θ, ∅ }

ൗ4𝜋𝑑2

𝑃𝑡

sin2θ

Antenna with low 

Dan (i.e., 1 is the 

lowest) radiates 

equally in all 

directions

Short dipole, 

dan<< , D = 1.5
Long dipole, dan 

= 9 , D = 6.1
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Antenna - contd.

▪ The power density of an ideal loss-less antenna at a distance d away 
from the transmitting antenna is:

24 d

GP
P tt

a


=

• Pt is the transmit power and Gt = Dan is the transmitting antenna gain in 

dB – This is relative to a transmission link with no antennas

• The product PtGt : Equivalent Isotropic Radiation Power (EIRP)

  ERIP is the power fed to a perfect isotropic antenna to 

  get the same output power of the practical antenna.

Note: the area is for a sphere.

W/m2

𝑃𝑎 =
𝑃𝑡

4𝜋𝑑2

For a directive antenna 

the power density

W/m2
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Antenna - contd.

▪ Strength of signal - defined in terms of its Electric Field Intensity E 

(V/m) or Magnetic Intensity H (A/m), because it is easier to measure it.

E = Rm.H, Pa = E2/Rm = H2Rm  

where Rm is the impedance of the medium. For free space Rm = 377 Ohms..

22

2

44 d

RP
Eand

d

RP
E mtmt


== V/m

Note:

• Direction of E field defines the polarization of the wave.

• At a sufficiently large distance from the transmitting 

antenna, E and H field strength are proportional to each 

other. "Sufficiently large" means more than 4λ. 

Distances from λ/2π to 4λ give good results, though 

under certain circumstances the values may not be too 

precise.E

H

Pa = E.H 
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Antenna - Real

▪ Not isotropic radiators, but always have directive effects (vertically 

and/or horizontally) 

▪ A well defined radiation pattern measured around an antenna

▪ Patterns are visualised by drawing the set of constant-intensity 

surfaces

Rx

Rx

Maximum

radiation

Minimum or 

no radiation

https://www.mtiwe.com/?CategoryID=353&ArticleID=163

Radiation pattern

(due to interference)

https://www.mtiwe.com/?CategoryID=353&ArticleID=163
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Antenna – Real - Simple Dipoles

▪ Not isotropic radiators, e.g., dipoles with lengths /4 on car roofs or /2 

as Hertzian dipole

▪ Example: Radiation pattern of a simple Hertzian dipole shape of 

antenna is proportional to the wavelength

side view (xy-plane)

x

y

side view (yz-plane)

z

y

top view (xz-plane)

x

z

simple

dipole

/4 /2

Largest dimension of the antenna La = /2

Feedline

𝐴𝑒−𝑅 =
2𝐺

4
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Antenna – Real - Sdirected and Sectorized

▪ Used for microwave or base 

stations for mobile phones (e.g., 

radio coverage of a valley)

side view (xy-plane)

x

y

side view (yz-plane)

z

y

top view (xz-plane)

x

z

Directed

top view, 3 sector

x

z

top view, 6 sector

x

z

Sectorized



Received Antenna
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dPt

Radiation pattern

Surface are S𝐴 = 4𝜋𝑑2

Mobile device

▪ The size of antenna in 

the mobile device is:

E.g., for 3 GHz, Ae-I = 8 cm2

𝐴𝑒−𝐼 =
2

4

The area ratio =
ൗ2

4𝜋

4𝜋𝑑2  =


4𝜋

2

.
1

𝑑2

The channel gain = 10 log10 =


4𝜋

2

.
1

𝑑2

Constant

▪ So, the mobile device will receive a portion of the Pt.

▪ Therefore, what matters is the received power Pr against 

the noise. I.e. SNR.
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Receiving Antenna - contd.

▪ The receiving antenna is characterized by its effective 

aperture Ae, which describes how well an antenna can pick 

up power from an incoming electromagnetic wave 

▪  The effective aperture Ae 

– for an ideal antenna is:

– For a real antenna

Ae = Pr / Pa => Ae-I-Rx = 2/4 

which is the equivalent power absorbing area of the antenna.

   Gr is the receiving antenna gain and   =  c/f

Ae-R-Rx = Gr
2/4 

And 𝐸 =
𝑃𝑟

𝐴𝑒−𝑅𝑥
𝑅𝑚



Antenna - contd.

Example: A GSM base station about 100 m away from the 

wooden pole on the left. 

Assume: 

Pt = 20 W, cable loss = 3 dB and Gt = 18 dBi, 

The field strength at 100 m distance can be estimated. E = 

1.4 V/m, H = 3.7 mA/m and the Pa = 5.0 mW/m2. 

We also find the effective isotropic radiated power PEIRP = 

633 W. 
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http://www.emfrf.com/rf-radiation-levels-from-cellular-

towers/gsm-cellular-tower-base-station-power-density-

levels2/
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Signal Propagation

(Channel Models)



Basic Digital Communication System 

Model
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Input

data

Pulse 

generator

TX

filter
channel

x(t)

Receiver

filterA/D

+
Channel noise

n(t)

Output data

+

HT(f)

HR(f)

y(t)

Hc(f)

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) + 𝑛 (𝑡)+i(t)
𝑦 𝑡 = 𝑥 𝑡 ∗ [ℎ𝑇 𝑡 ∗ ℎ𝑐 𝑡 ∗ ℎ𝑅 𝑡 ] + 𝑛(𝑡)+i(t)

𝑦(𝑡) = σ𝑖 𝐴𝑖ℎ𝑐(𝑡 − 𝑡𝑑 − 𝑖𝑇𝑏) + 𝑛 (𝑡) )+i(t)

𝑥(𝑡) = 𝑎𝑖𝑥(𝑡 − 𝑖𝑇𝑏)

Tb: Symbol period

Interference

Time varying channel

with the time delay td
(Just considering hc(t)) 

Noise



Fourier Representation of Periodic 

Signals
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(based on harmonics)

Amp
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▪ Different representations of signals 
– amplitude (amplitude domain)

– frequency spectrum (frequency domain)

– phase state diagram (amplitude M and phase  in polar coordinates)

▪ Composite signals mapped into frequency domain using 
Fourier transformation

▪ Digital signals need
– infinite frequencies for perfect representation  

– modulation with a carrier frequency for transmission (->analog signal!) 

Signals II

f [Hz]

A 

[V]



I= M cos 

Q = M sin 



A [V]

t[s]
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Channel Models

▪ High degree of variability (in time, space etc.)

▪ Large signal attenuation

▪ Non-stationary, unpredictable and random 
– Unlike wired channels it is highly dependent on the environment, 

time space etc.

▪ Modelling is done in a statistical fashion

▪ The location of the base station antenna has a significant 
effect on channel modelling

▪ Models are only an approximation of the actual signal 
propagation in the medium.

▪ Are used for:
– performance analysis

– simulations of mobile systems

– measurements in a controlled environment, to guarantee 
repeatability and to avoid the expensive measurements in the field.
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Channel Models - Classifications

▪ System Model - Deterministic

▪ Propagation Model- Deterministic
– Predicts the received signal strength at a distance from the 

transmitter

– Derived using a combination of theoretical and empirical method.

▪ Stochastic Model - Rayleigh channel

▪ Semi-empirical (Practical +Theoretical) Models



▪ This can be modelled as an 

– ideal low pass filter

– non-ideal low pass filter

• This smears the transmitted signal x(t) in time causing the effect 

of a symbol to spread to adjacent symbols when a sequence of 

symbols are transmitted.  

• The resulting interference, intersymbol interference (ISI), 

degrades the error performance of the communication system.

Z. Ghassemlooy

)(tx

Channel

)(ty

Channel Models - Linear

tt
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Channel Models – Linear Time Varying

▪ Therefore for a linear channel:

Linear channel

h(t)   →H(f)x(t) y(t) = k x(t-td)

Constant

Finite delay

(due to channel)

d

d

tj

tj

kefHwhere

fXfH

fXke

tyFfY





−

−

=

=

=

=

)(

)()(

)(

)]([)(

dftfHkfH −== 2)(arg,)(

Amplitude

distortion

Phase

distortion

▪ The phase delay

Describes the phase delayed experienced by each frequency component 

ffHftd −= 2/)(arg)(

No Noise
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Channel Models – Multipath Link

▪ The mathematical model of the multipath can be presented using the 

method of the impulse response used for studying linear systems.

Linear channel

h(t)   →H(f)

h(n)

x(t) = (t)

x(n)= (n) 

y(t) = k x(t-td)

y(n)= k x(n-N)

D D D

h(0) h(1) h(2) h(N-1) h(N)

y(n)

x(n)

+
+

+
+

+

Channel is usually modeled as Tap-Delay-Line BS

MU

Building
0

1

2

y(t)

x(t)



Channel Models – Multipath Link

The channel impulse response 

▪ Amplitude depends on the antenna pattern, environment

▪ Delay depends on environment → Delay spread

▪ Varies with time due to mobility of the Tx, Rx, changes in 

the environment → Coherence time 

320px-Multipath_impulse_response

• Path loss

• Shadowing

• Multipath

ℎ𝐵𝐵 𝑡, 𝜏 = ෍

𝑖=0

𝑁−1

𝐴𝑖(𝑡)𝛿(𝜏 − 𝜏𝑖 𝑡 )

ℎ𝑃𝐵 𝑡, 𝜏 = ෍

𝑖=0

𝑁−1

𝐴𝑖(𝑡)𝑒−𝑗2𝜋𝑓𝑐𝜏𝑖(𝑡)𝛿(𝜏 − 𝜏𝑖 𝑡 )

So real base-band signal = Superposition 

of different path:

And complex pass-band signal with the 

carrier frequency fc:

Complex number, which changes rapidly

http://en.wikipedia.org/wiki/Image:Multipath_impulse_response.png


Channel Models – Multipath Link

▪ Baseband signal:   𝑔 𝑡 =  ෍

𝑘=−∞

+∞

𝑎𝑘𝑝(𝑡 − 𝑘𝑇𝑏)

▪ Passband signal:   𝑥 𝑡 = Re 𝑔(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡




−

=

−−



−

−

=

=

1

0

2

2)()(

N

i

fij

i

ftj

ii eea

dtethfH▪ Channel transfer function:  
320px-Multipath_transfer_function

𝑥 𝑡𝑔 𝑡

𝑐 𝑡

𝑦 𝑡 =  ෍

𝑖

𝑁−1

𝑎𝑖 𝑡 𝑥(−𝜏𝑖 𝑡 )

▪ The received pass-band signal:

𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡 + 𝑛 𝑡 + 𝑖 𝑡

      y(t) = Re 𝑔 𝑡 ∗ ℎ(𝑡) 𝑒−𝑗2𝜋𝑓𝑐(𝑡) + 𝑛 𝑡 + 𝑖 𝑡

▪ The received pass-band signal for a perfect channel (i.e., h(t) =1:

http://en.wikipedia.org/wiki/Image:Multipath_transfer_function.png


Power Delay Profile
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Power Delay Spread - Example
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-30 dB

-20 dB

-10 dB

0 dB

0 1 2 5

Pr()

(µs)


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1
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Signal bandwidth for Analog Cellular = 30 KHz

Signal bandwidth for GSM = 200 KHz

1

Indoor        10 50 sec
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





−

−

 −
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Inter-symbol interference (ISI)

▪ Channel is band limited in nature: Limited 

frequency response → unlimited time response

▪ Channel is multipath

▪ Two major ways to mitigate the effect of ISI. 

– Use bandlimited pulses (i.e., Nyquist pulses) 

which minimize the effect of ISI.

– Equalization
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BS

MU

Buil

ding

0
1

2

-30 dB

-20 dB

-10 dB

0 dB

0 1 2 5

Pr()

(µs)



4.38 µs

0 1 2 5 (µs)

Symbol time



Symbol time > 10*    --- No equalization required

Symbol time < 10*    --- Equalization will be required to deal with ISI



Multipath Delay

▪ LOS links - 52 meter, a large 753.5 ns excess delay

▪ NLOS excess delay over 423 meters extended to 1388.4 ns.

▪ Office building: RMS delay spread = 10-60 ns
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Cell size (km) Max Delay Spread

Pico cell 0.1 300 nn

Micro cell 5 15 us

Macro cell 20 40 us
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Channel Models – Multipath Link

▪ Multipath Time 

– Mostly used to denote the severity of 

multipath conditions. 

– Defined as the time delay between the 1st 

and the last received impulses.

01 −= −NMPT




−

=

−−



−

−

=

=

1

0

2

2)()(

N

i

fij

i

ftj

ii eea

dtethfH

▪ Channel transfer function  
320px-Multipath_transfer_function

▪ Coherence bandwidth -  is a statistical 

measurement of the range of frequencies over 

which the channel can be considered "flat", on 

average the distance between two notches

                                         Bc ~ 1/TMP   
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