

Mobile Communications

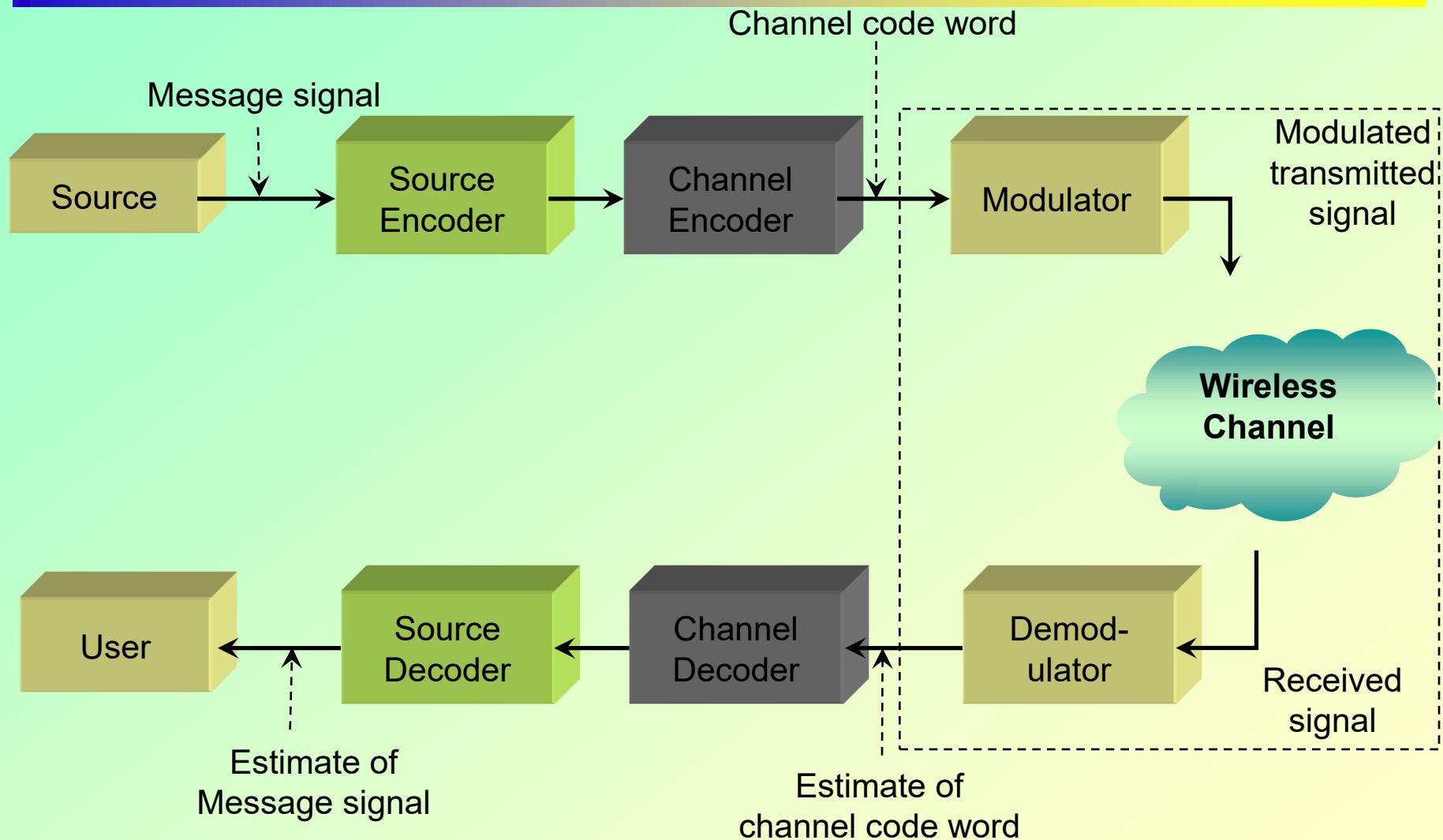
Part VI- Propagation Characteristics

Professor Z Ghassemlooy

Contents

- Wireless communication systems
- Radiation from antenna
- Signal propagation
- Channel model
- Interference

Wireless Communications System



Basic Questions

Transmitter:

- What will happen if the transmitter
 - changes the transmit power ?
 - changes the frequency ?
 - operates at higher speed ?

Channel:

What will happen if we conduct this experiment in different types of environments?

Desert

Metro

Street

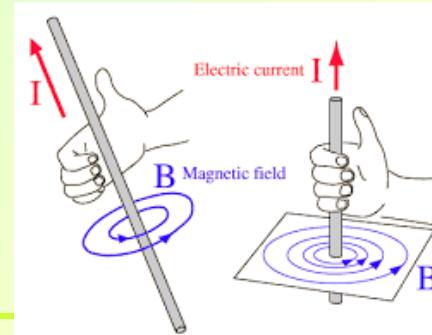
Indoor

Receiver:

Q- What will happen if the receiver moves?

Antenna - Concept

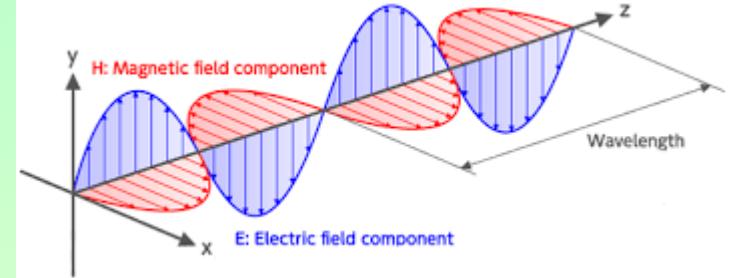
- **Type of antenna**
 - Omnidirectional
 - Sector
 - Directional
- **Aspect of antennas**
 - Gain/signal spread
 - Reciprocity
 - Range
 - Mounting
- **Signal is generated by electrons movement (i.e., oscillation) in a piece of metal (wire)**
- **Right-hand rule:**
 - Electrons moving in the direction of thumb is pointed, then a Magnetic field **H** (or **B**) is produced around the wire in the direction the fingers are pointed.
 - Oscillating current (AC signal) will generate oscillating **H**



Antenna - Concept

- **Speed of electromagnetic waves**

$$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \approx 3.0 \times 10^8 \text{ m/s}$$



Where $\epsilon_0 = 8.8542 \times 10^{12} \text{ C}^2\text{s}^2/\text{kg}\text{m}^3$ Permittivity of vacuum
 $\mu_0 = 4\pi \times 10^{-7} \text{ kg}\text{m}/\text{A}^2\text{s}^2/\text{kg}\text{m}^3$ Permeability of vacuum

- **Electromagnetic waves**

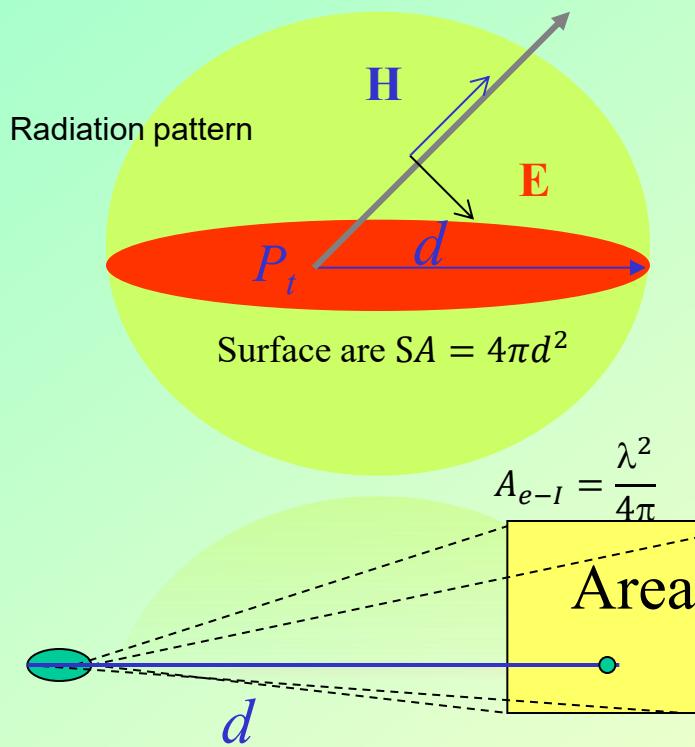
$$E = E_0 \sin(kz - wt); \text{ and } H = H_0 \sin(kz - wt)$$

Where $k = 2\pi/\lambda$

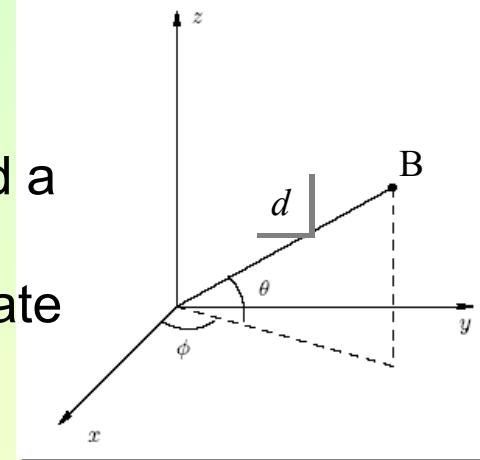
$$E = E_0 \sin[2\pi/\lambda(z - ct)]; \text{ and } H = H_0 \sin 2\pi/\lambda[(z - ct)]$$

Antenna - Ideal

- Type of antenna: **Omnidirectional; Sector and directional**
- Isotropic antenna: In free space radiates power equally in all direction. Not realizable physically



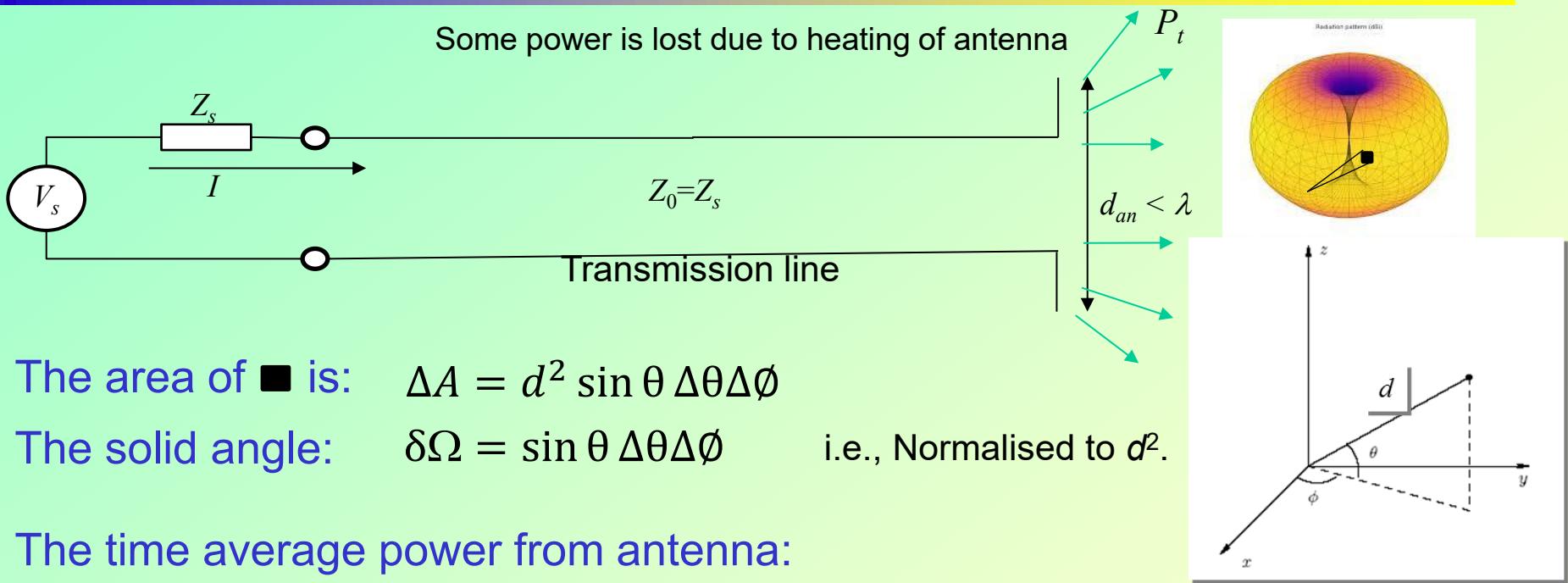
The EM fields around a transmitting antenna, i.e., a polar coordinate



- d = distance directly away from the antenna.
- ϕ = azimuth, or angle in the horizontal plane.
- θ = zenith, or angle above the horizon.

E.g., for 3 GHz, $A_{e-I} = 8 \text{ cm}^2$

Antenna - *contd.*



$$\vec{S} = \vec{E} \times \vec{H}$$

\times - Cross-product

$$\vec{S}_{ave} = \int_0^T \vec{E} \times \vec{H} \partial t$$

Impedance of the free space

$$S(d, \theta, \phi) = \sqrt{\frac{\mu_0}{\epsilon_0}} \frac{(I d_{an} k)^2}{32(\pi d)^2} \sin^2 \theta$$

Antenna - *contd.*

Total power radiated:

$$P_t = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} S(d, \theta, \phi) \Delta A$$

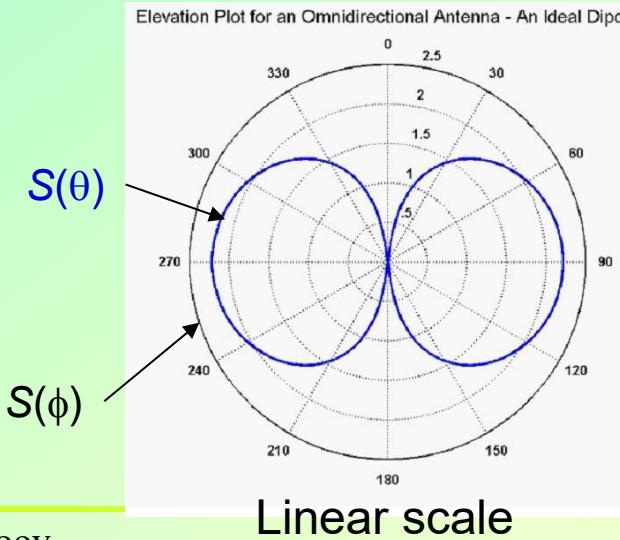
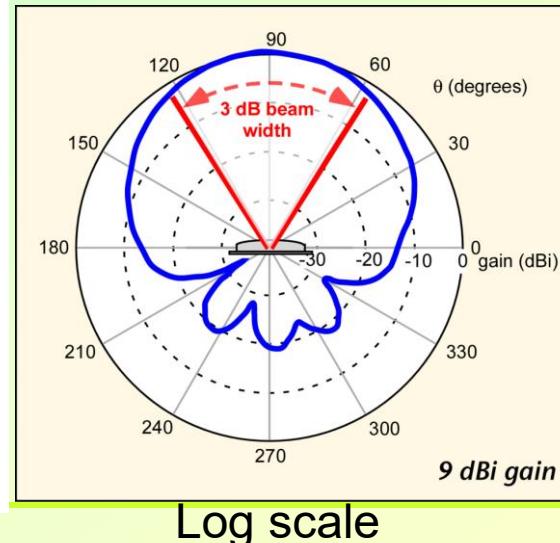
$$P_t = d^2 \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} S(d, \theta, \phi) \sin \theta \Delta \theta \Delta \phi$$

Adding up all the small areas that make out the sphere.

Normalised radiation intensity:

$$F(\theta, \phi) = \frac{S(d, \theta, \phi)}{\max\{S(d, \theta, \phi)\}} = \sin^2 \theta$$

Note, Max of S is at $\theta=90^\circ$.



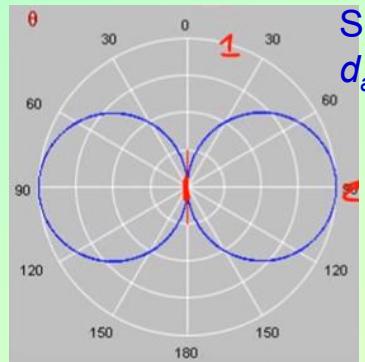
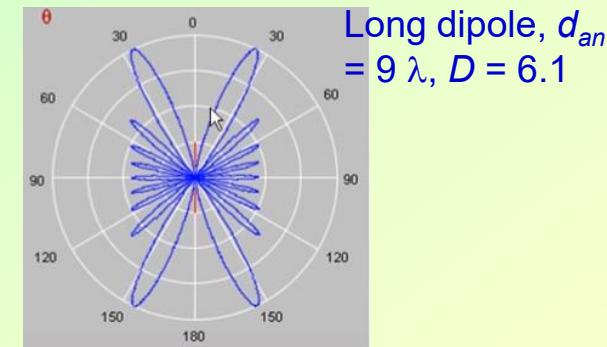
Less sensitive to small changes

Antenna - *contd.*

Directivity of an antenna: Indication of the antenna radiation directionality:

$$D_{an} = \frac{\max\{F(\theta, \phi)\}}{\text{mean } \{F(\theta, \phi)\}} = \frac{\max\{S(d, \theta, \phi)\}}{4\pi d^2 / P_t} \sin^2 \theta$$

Antenna with low D_{an} (i.e., 1 is the lowest) radiates equally in all directions



The **radiation efficiency** defines how much of the power that drives the antenna actually radiates into the space:

$$\xi = \frac{P_t}{P_{total}}$$

where P_t is the transmit (radiated) power and P_{total} is the total power derived with

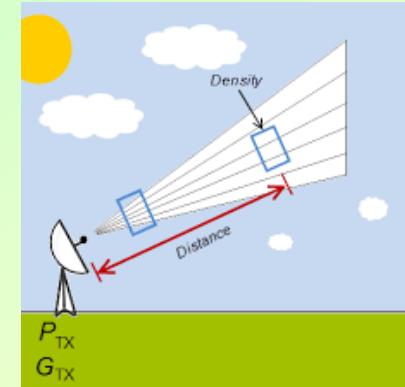
Antenna - *contd.*

- The **power density** of an ideal loss-less antenna at a distance d away from the transmitting antenna is:

$$P_a = \frac{P_t}{4\pi d^2} \quad \text{W/m}^2$$

For a directive antenna
the power density $P_a = \frac{P_t G_t}{4\pi d^2} \quad \text{W/m}^2$

Note: the area is for a sphere.



- P_t is the transmit power and $G_t = \xi D_{an}$ is the transmitting antenna gain in dB – This is relative to a transmission link with no antennas
- The product $P_t G_t$: **Equivalent Isotropic Radiation Power (EIRP)**

EIRP is the power fed to a perfect isotropic antenna to get the same output power of the practical antenna.

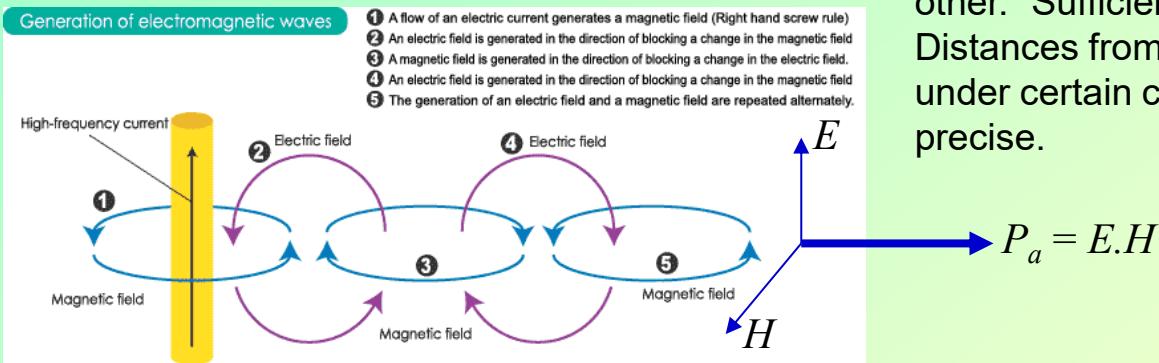
Antenna - *contd.*

- Strength of signal - defined in terms of its **Electric Field Intensity E (V/m)** or **Magnetic Intensity H (A/m)**, because it is easier to measure it.

Note:

- Direction of E field defines the polarization of the wave.
- At a sufficiently large distance from the transmitting antenna, E and H field strength are proportional to each other. "Sufficiently large" means more than 4λ .

Distances from $\lambda/2\pi$ to 4λ give good results, though under certain circumstances the values may not be too precise.



where R_m is the impedance of the medium. For free space $R_m = 377$ Ohms.

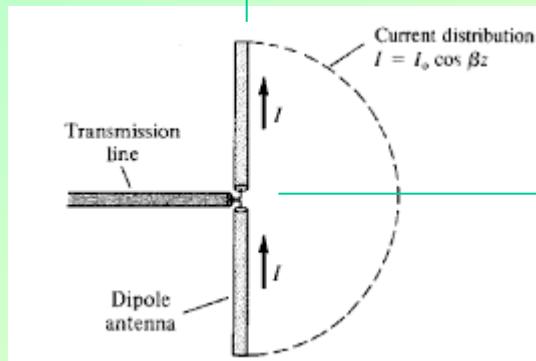
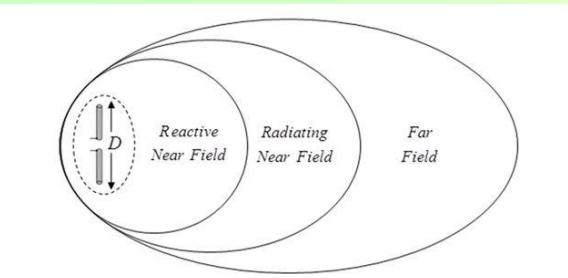
$$E^2 = \frac{P_t R_m}{4\pi d^2} \quad \text{and} \quad E = \sqrt{\frac{P_t R_m}{4\pi d^2}}$$

V/m

Antenna - Real

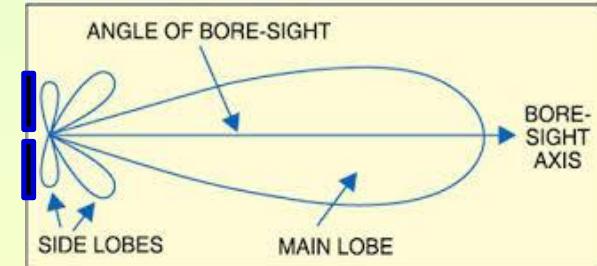
- Not isotropic radiators, but always have directive effects (vertically and/or horizontally)
- A well defined radiation pattern measured around an antenna
- Patterns are visualised by drawing the set of constant-intensity surfaces

Rx
Minimum or
no radiation



<https://www.mtiwe.com/?CategoryID=353&ArticleID=163>

Rx
Maximum
radiation

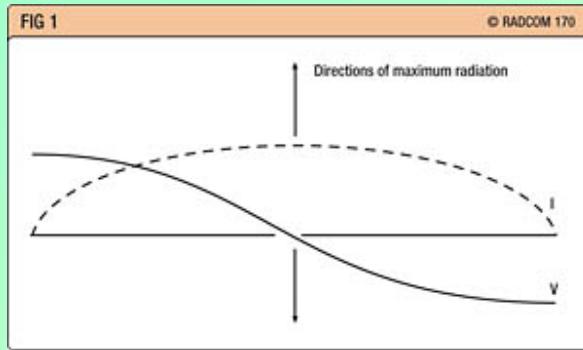
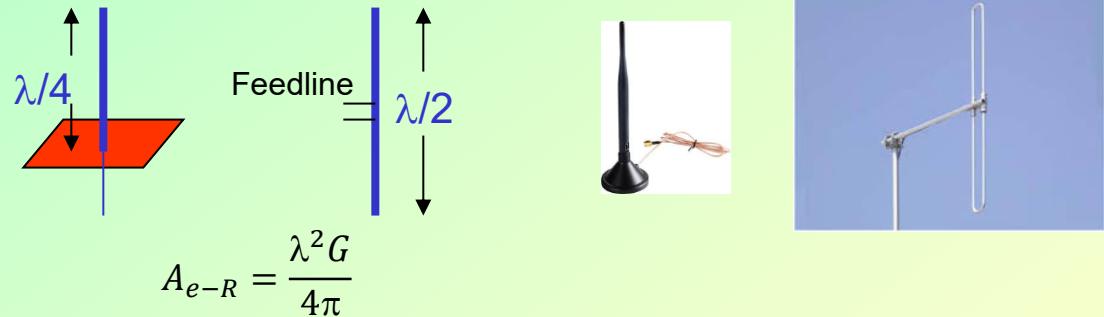
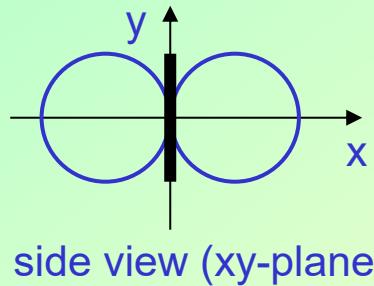
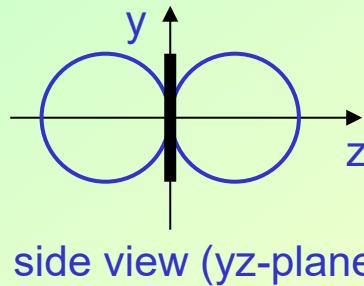
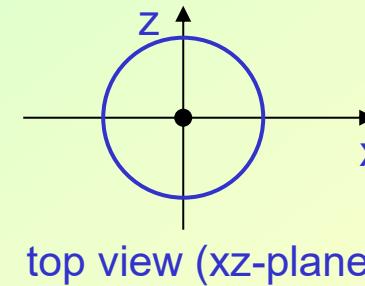


Radiation pattern
(due to interference)

Antenna – Real - Simple Dipoles

- Not isotropic radiators, e.g., dipoles with lengths $\lambda/4$ on car roofs or $\lambda/2$ as Hertzian dipole

Largest dimension of the antenna $L_a = \lambda/2$

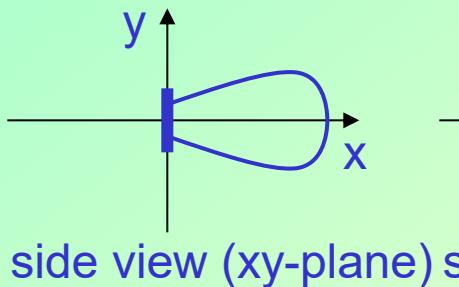
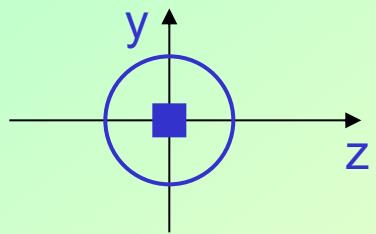
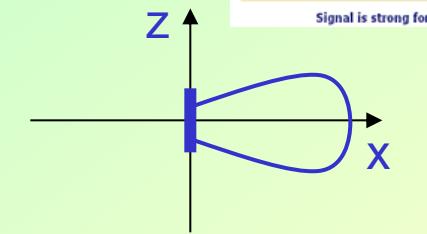
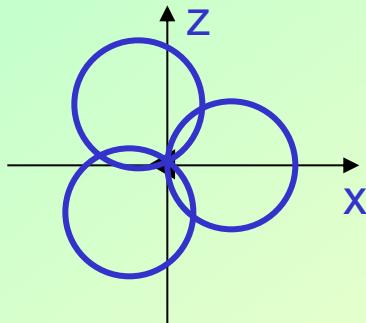
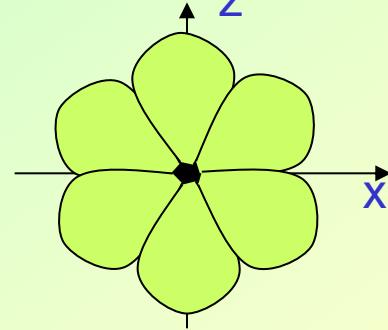
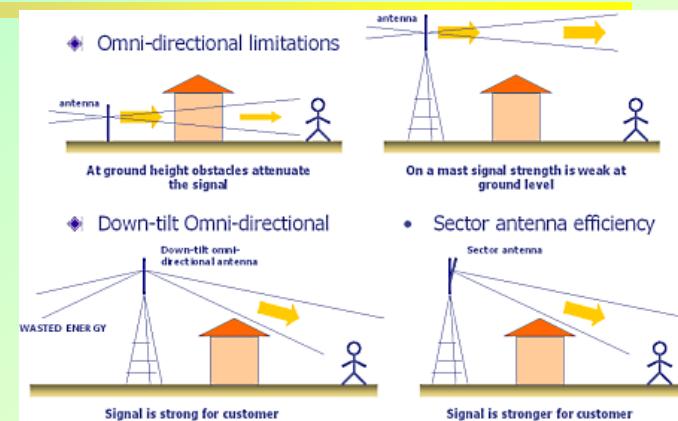


simple
dipole

- Example: Radiation pattern of a simple Hertzian dipole shape of antenna is proportional to the wavelength

Antenna – Real - Sdirected and Sectorized

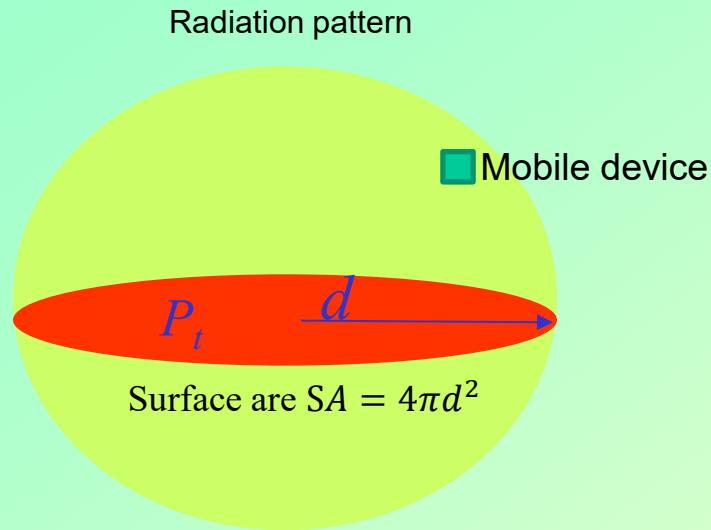
- Used for microwave or base stations for mobile phones (e.g., radio coverage of a valley)



Directed

Sectorized

Received Antenna



The channel gain = $10 \log_{10} = \left(\frac{\lambda}{4\pi} \right)^2 \cdot \frac{1}{d^2}$

- The size of antenna in the mobile device is:

$$A_{e-I} = \frac{\lambda^2}{4\pi}$$

E.g., for 3 GHz, $A_{e-I} = 8 \text{ cm}^2$

The area ratio = $\frac{\lambda^2/4\pi}{4\pi d^2} = \left(\frac{\lambda}{4\pi} \right)^2 \cdot \frac{1}{d^2}$

$\underbrace{\left(\frac{\lambda}{4\pi} \right)^2}_{\text{Constant}} \cdot \frac{1}{d^2}$

- So, the mobile device will receive a portion of the P_t .
- Therefore, what matters is the received power P_r against the noise. i.e. SNR.**

Receiving Antenna - *contd.*

- The receiving antenna is characterized by its effective aperture A_e , which describes how well an antenna can pick up power from an incoming electromagnetic wave
- The effective aperture A_e
 - for an ideal antenna is:

$$A_e = P_r / P_a \Rightarrow A_{e-I-Rx} = \lambda^2 / 4\pi$$

– For a real antenna $A_{e-R-Rx} = G_r \lambda^2 / 4\pi$

which is the equivalent power absorbing area of the antenna.

G_r is the receiving antenna gain and $\lambda = c/f$

And
$$E = \sqrt{\frac{P_r}{A_{e-Rx}} R_m}$$

Antenna - *contd.*

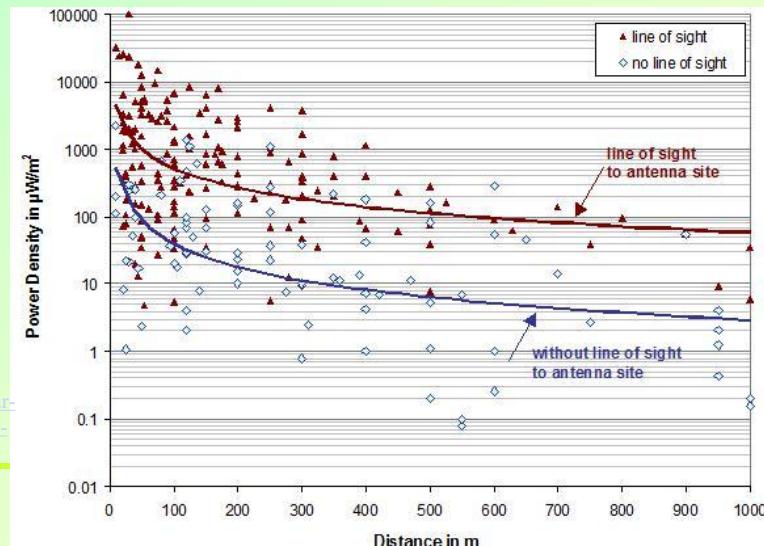
Example: A GSM base station about 100 m away from the wooden pole on the left.

Assume:

$P_t = 20 \text{ W}$, cable loss = 3 dB and $G_t = 18 \text{ dBi}$,

The field strength at 100 m distance can be estimated. $E = 1.4 \text{ V/m}$, $H = 3.7 \text{ mA/m}$ and the $P_a = 5.0 \text{ mW/m}^2$.

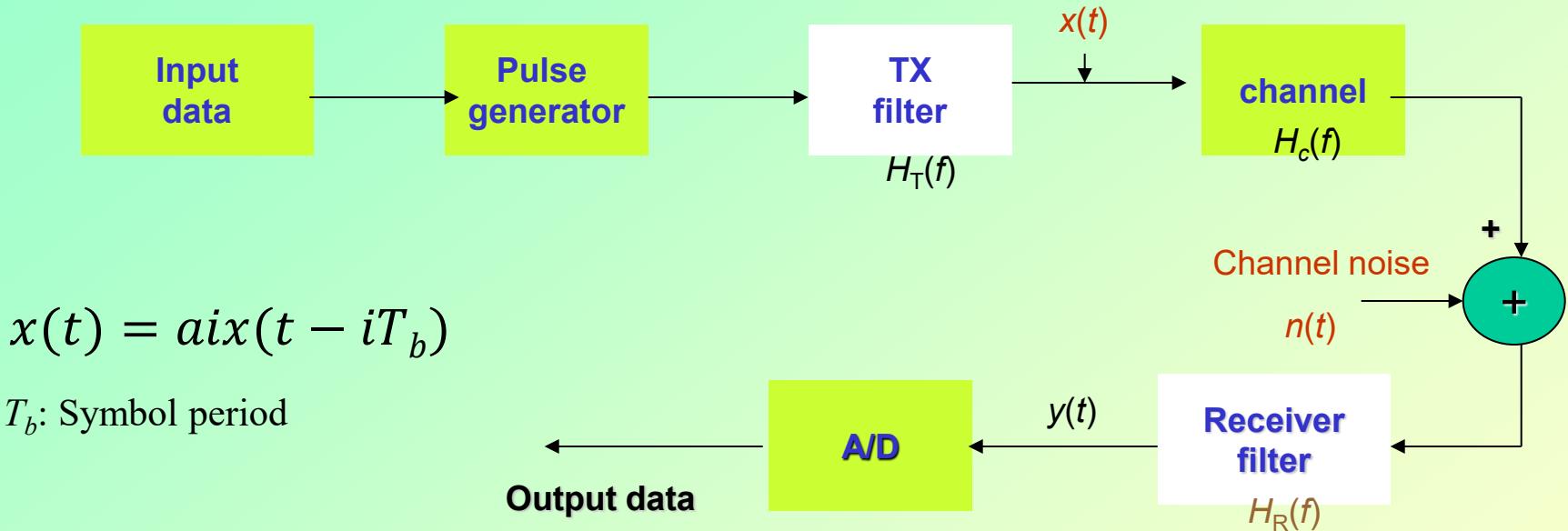
We also find the effective isotropic radiated power $P_{EIRP} = 633 \text{ W}$.



<http://www.emfrf.com/rf-radiation-levels-from-cellular-towers/gsm-cellular-tower-base-station-power-density-levels2/>

Signal Propagation (Channel Models)

Basic Digital Communication System Model



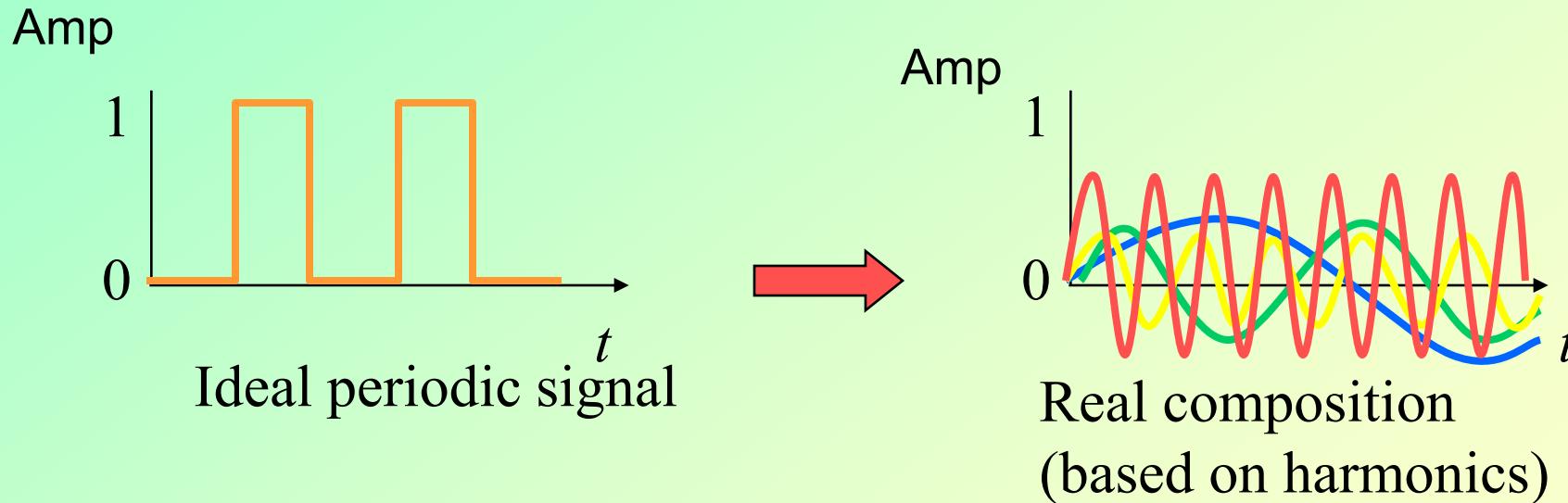
$$\begin{aligned}
 y(t) &= x(t) * h(t) + n(t) + i(t) \\
 y(t) &= x(t) * [h_T(t) * h_c(t) * h_R(t)] + n(t) + i(t) \\
 y(t) &= \sum_i A_i h_c(t - t_d - iT_b) + n(t) + i(t)
 \end{aligned}$$

Time varying channel
with the time delay t_d
(Just considering $h_c(t)$)

Noise Interference

Fourier Representation of Periodic Signals

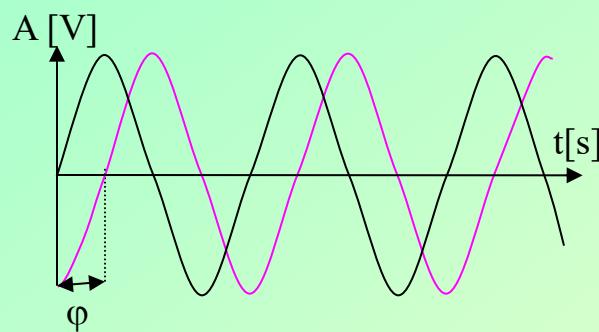
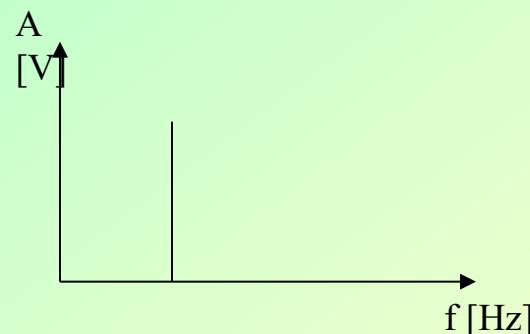
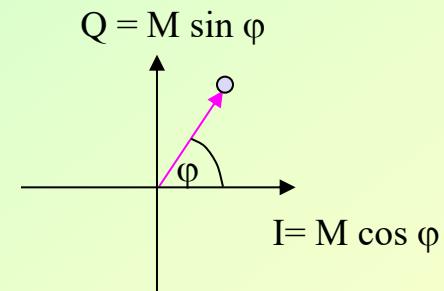
$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi nft) + \sum_{n=1}^{\infty} b_n \cos(2\pi nft)$$



Signals II

- Different representations of signals

- amplitude (amplitude domain)
- frequency spectrum (frequency domain)
- phase state diagram (amplitude M and phase φ in polar coordinates)



- Composite signals mapped into frequency domain using Fourier transformation
- Digital signals need
 - infinite frequencies for perfect representation
 - modulation with a carrier frequency for transmission (->analog signal!)

Channel Models

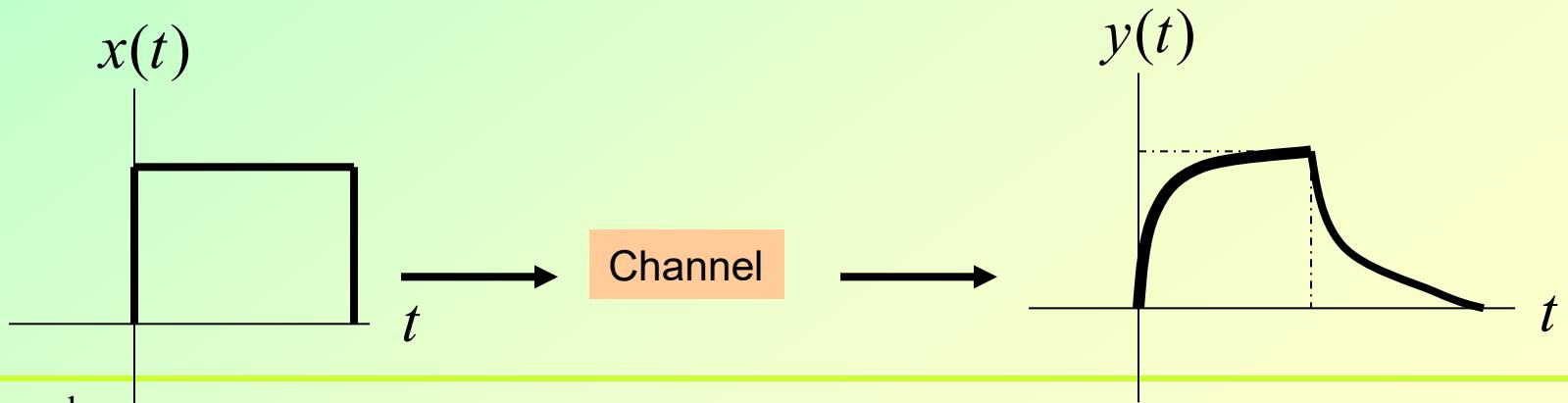
- High degree of variability (in time, space etc.)
- Large signal attenuation
- Non-stationary, unpredictable and random
 - Unlike wired channels it is highly dependent on the environment, time space etc.
- Modelling is done in a statistical fashion
- The location of the base station antenna has a significant effect on channel modelling
- Models are only an approximation of the actual signal propagation in the medium.
- Are used for:
 - performance analysis
 - simulations of mobile systems
 - measurements in a controlled environment, to guarantee repeatability and to avoid the expensive measurements in the field.

Channel Models - Classifications

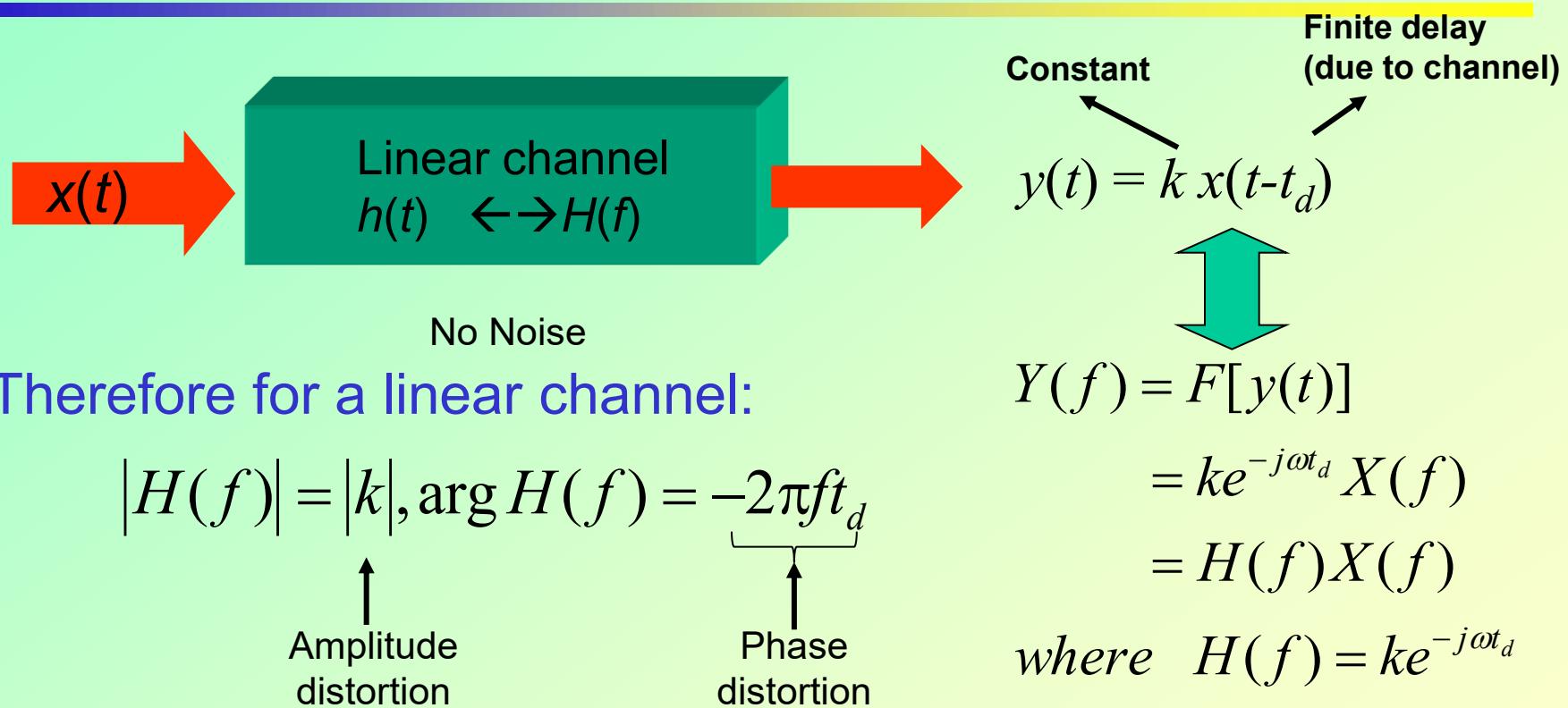
- System Model - *Deterministic*
- Propagation Model- *Deterministic*
 - Predicts the received signal strength at a distance from the transmitter
 - Derived using a combination of theoretical and empirical method.
- Stochastic Model - *Rayleigh channel*
- Semi-empirical (Practical +Theoretical) Models

Channel Models - Linear

- This can be modelled as an
 - ideal low pass filter
 - non-ideal low pass filter
 - This smears the transmitted signal $x(t)$ in time causing the effect of a symbol to spread to adjacent symbols when a sequence of symbols are transmitted.
 - The resulting interference, intersymbol interference (ISI), degrades the error performance of the communication system.



Channel Models – Linear Time Varying



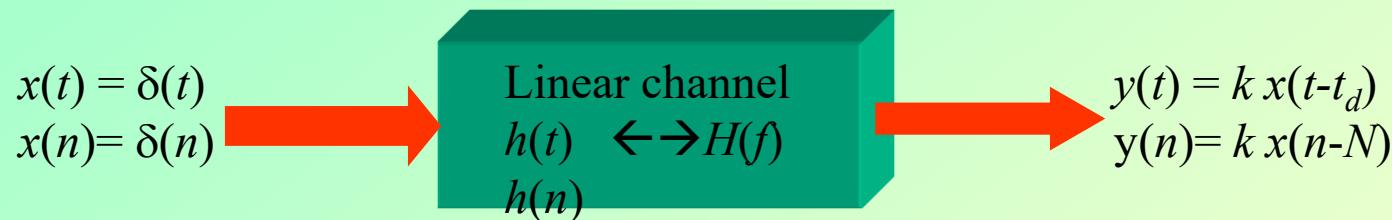
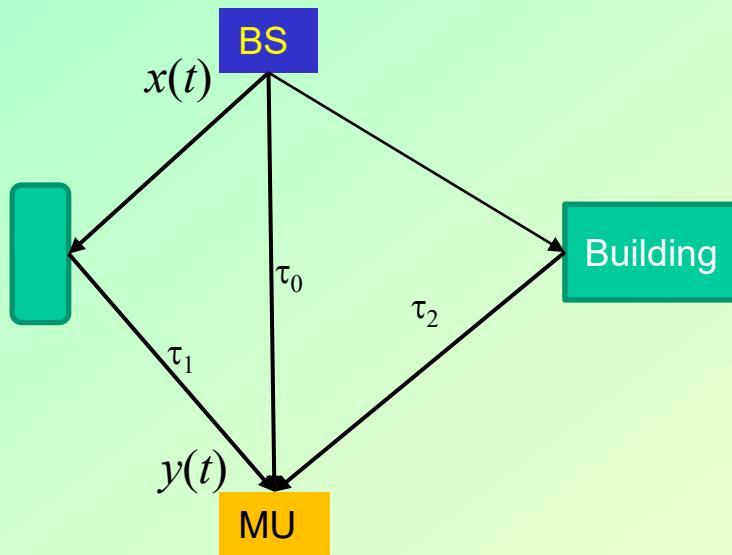
- The phase delay

$$t_d(f) = -\arg H(f) / 2\pi f$$

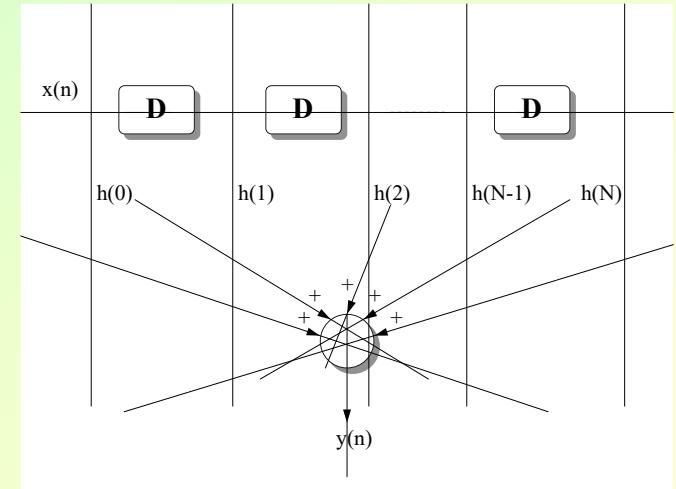
Describes the phase delayed experienced by each frequency component

Channel Models – Multipath Link

- The mathematical model of the multipath can be presented using the method of the impulse response used for studying linear systems.



Channel is usually modeled as Tap-Delay-Line



Channel Models – Multipath Link

The channel impulse response

- Amplitude depends on the antenna pattern, environment
- Delay depends on environment → Delay spread
- Varies with time due to mobility of the Tx, Rx, changes in the environment → Coherence time

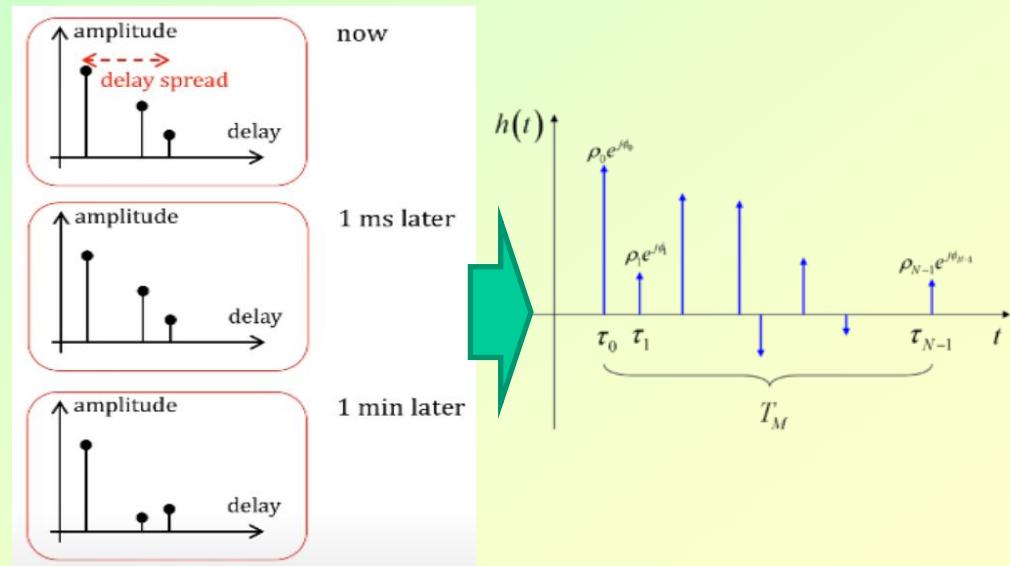
• Path loss
• Shadowing
• Multipath

So real base-band signal = Superposition of different path:

$$h_{BB}(t, \tau) = \sum_{i=0}^{N-1} A_i(t) \delta(\tau - \tau_i(t))$$

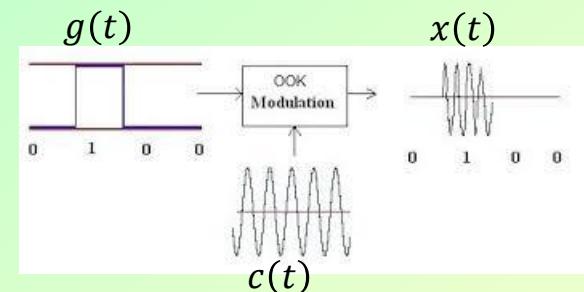
And complex pass-band signal with the carrier frequency f_c :

$$h_{PB}(t, \tau) = \sum_{i=0}^{N-1} \underbrace{A_i(t) e^{-j2\pi f_c \tau_i(t)}}_{\text{Complex number, which changes rapidly}} \delta(\tau - \tau_i(t))$$



Channel Models – Multipath Link

- Baseband signal: $g(t) = \sum_{k=-\infty}^{+\infty} a_k p(t - kT_b)$



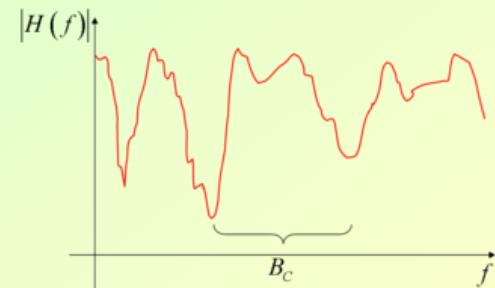
- Passband signal: $x(t) = \operatorname{Re}\{g(t)e^{j2\pi f_c t}\}$

- Channel transfer function: $H(f) = \int_{-\infty}^{\infty} h(t) e^{-j2\pi f t} dt$

$$= \sum_{i=0}^{N-1} a_i e^{-j\theta_i} e^{-j2\pi f t_i}$$

- The received pass-band signal:

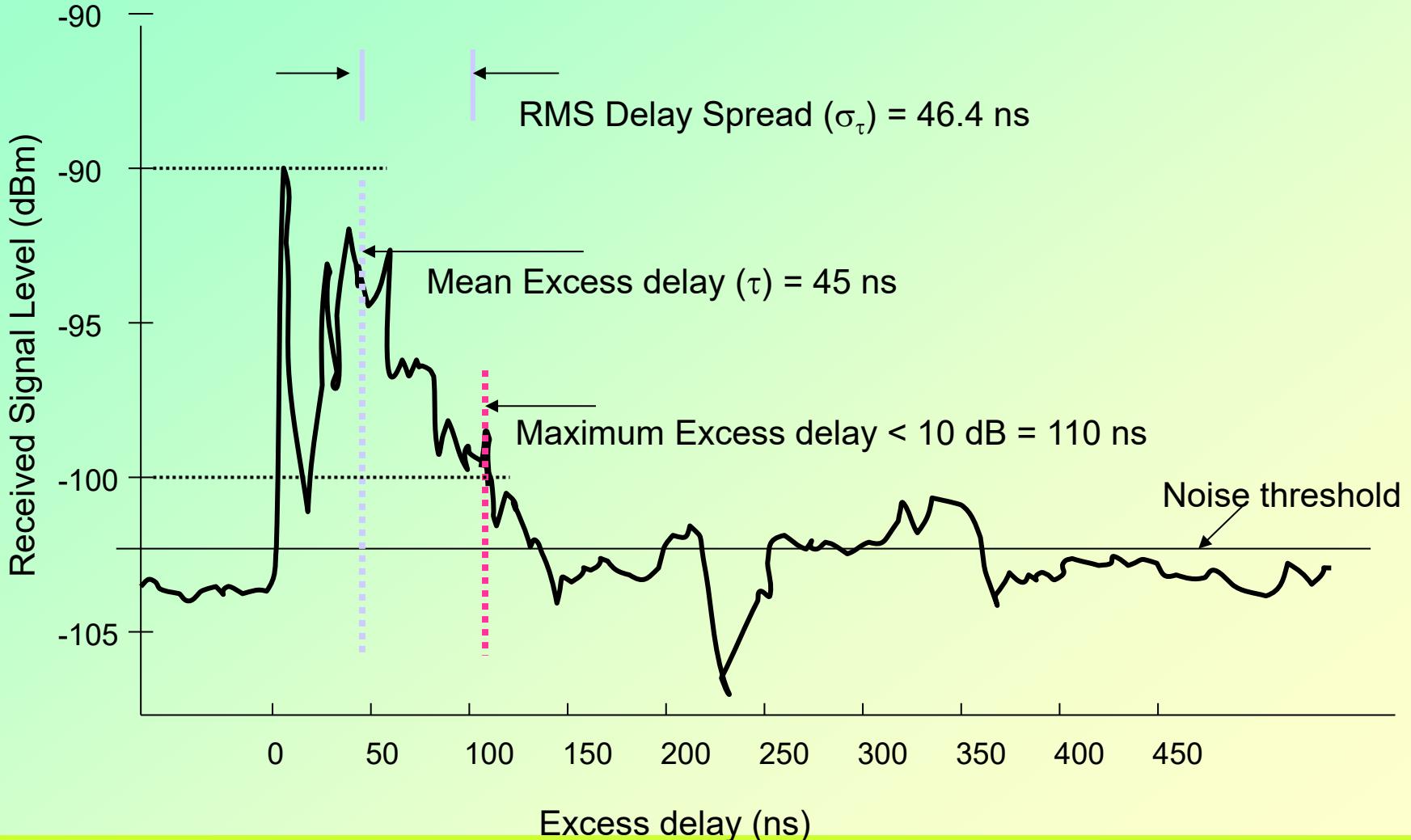
$$y(t) = x(t) * h(t) + n(t) + i(t)$$
$$y(t) = \operatorname{Re}\{(g(t) * h(t))e^{-j2\pi f_c t}\} + n(t) + i(t)$$



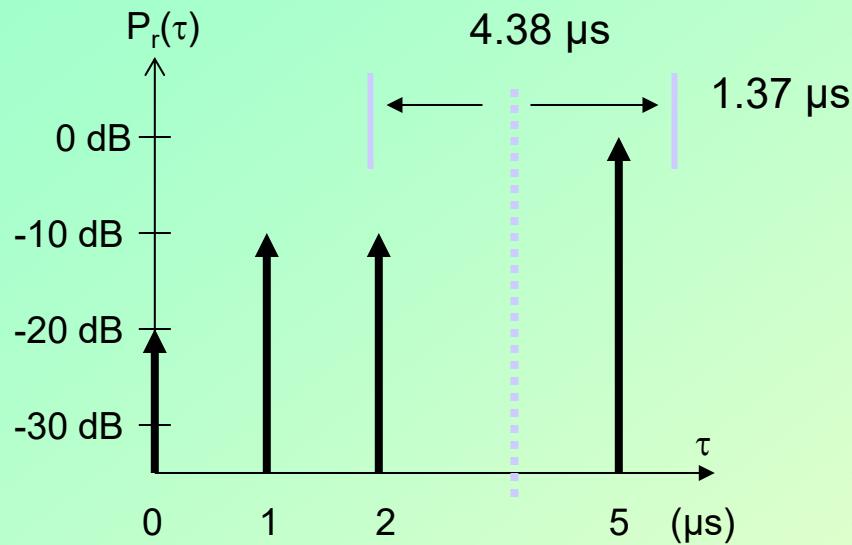
- The received pass-band signal for a perfect channel (i.e., $h(t) = 1$):

$$y(t) = \sum_{i=0}^{N-1} a_i(t) x(-\tau_i(t))$$

Power Delay Profile



Power Delay Spread - Example



Indoor	$10 - 50 \text{ n sec}$
Suburbs	$2 \times 10^{-1} - 2 \mu\text{sec}$
Urban	$1 - 3 \mu\text{sec}$
Hilly	$3 - 10 \mu\text{sec}$

Signal bandwidth for Analog Cellular = 30 KHz
 Signal bandwidth for GSM = 200 KHz

$$\bar{\tau} = \frac{(1)(5) + (0.1)(1) + (0.1)(2) + (0.01)(0)}{[0.01 + 0.1 + 0.1 + 1]} = 4.38 \mu\text{s}$$

$$\bar{\tau^2} = \frac{(1)(5)^2 + (0.1)(1)^2 + (0.1)(2)^2 + (0.01)(0)^2}{[0.01 + 0.1 + 0.1 + 1]} = 21.07 \mu\text{s}^2$$

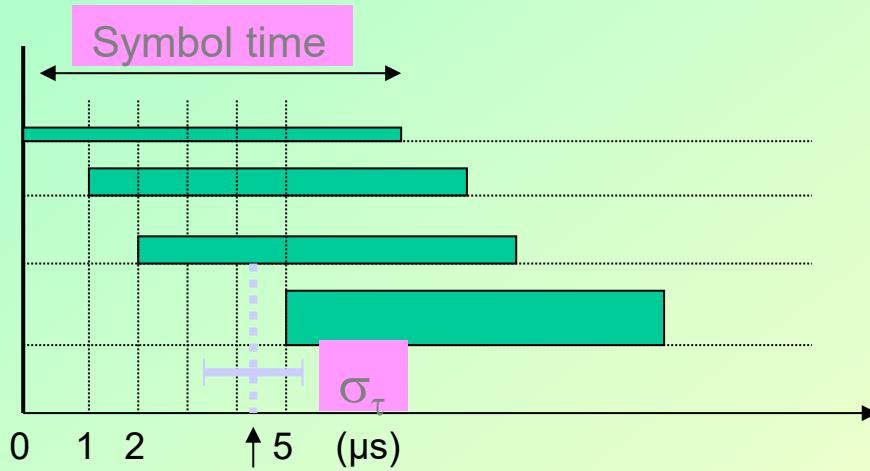
$$\sigma_{\tau} = \sqrt{21.07 - (4.38)^2} = 1.37 \mu\text{s}$$

Z. Ghassemlooy

$$(50\% - coherence) B_c \approx \frac{1}{5 \cdot \sigma_{\tau}} = 146 \text{ kHz}$$

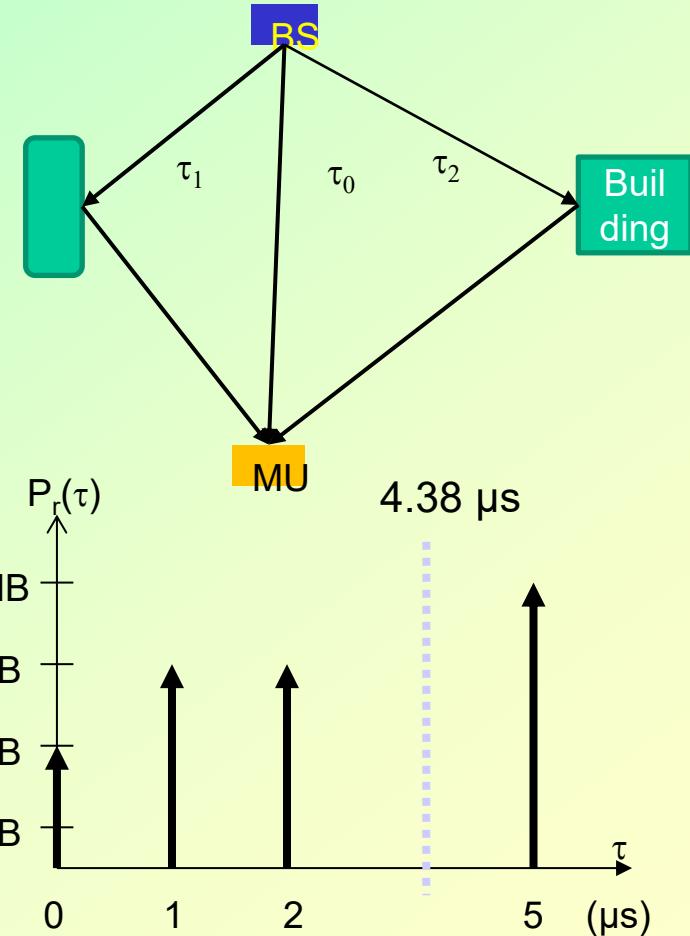
Inter-symbol interference (ISI)

- Channel is band limited in nature: Limited frequency response → unlimited time response
- Channel is multipath
- Two major ways to mitigate the effect of ISI.
 - Use bandlimited pulses (i.e., Nyquist pulses) which minimize the effect of ISI.
 - Equalization



Symbol time $> 10^* \sigma_\tau$ --- No equalization required

Symbol time $< 10^* \sigma_\tau$ --- Equalization will be required to deal with ISI



Multipath Delay

- LOS links - 52 meter, a large 753.5 ns excess delay
- NLOS excess delay over 423 meters extended to 1388.4 ns.
- Office building: RMS delay spread = 10-60 ns

	Cell size (km)	Max Delay Spread
Pico cell	0.1	300 nn
Micro cell	5	15 us
Macro cell	20	40 us

Channel Models – Multipath Link

- Channel transfer function

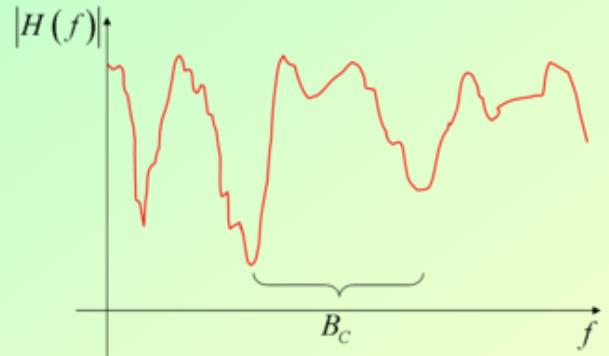
$$\begin{aligned} H(f) &= \int_{-\infty}^{\infty} h(t) e^{-j2\pi ft} dt \\ &= \sum_{i=0}^{N-1} a_i e^{-j\theta_i} e^{-j2\pi f t_i} \end{aligned}$$

- Multipath Time

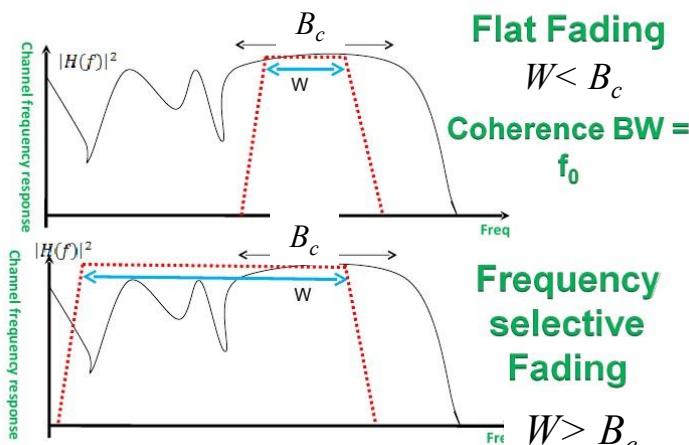
- Mostly used to denote the severity of multipath conditions.
- Defined as the time delay between the 1st and the last received impulses.

$$T_{MP} = \tau_{N-1} - \tau_0$$

- Coherence bandwidth - is a statistical measurement of the range of frequencies over which the channel can be considered "flat", on average the distance between two notches

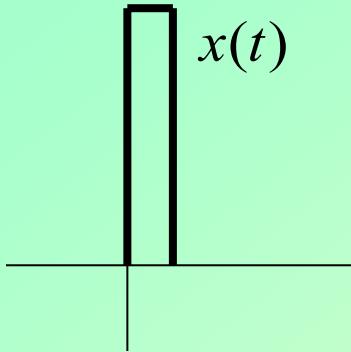


Time spreading : Coherence Bandwidth

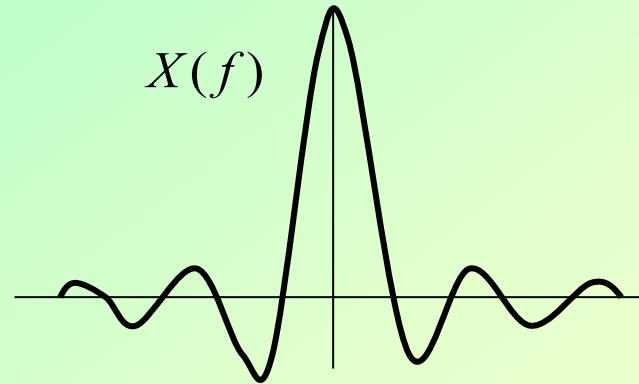


Channel Models – Multipath Link

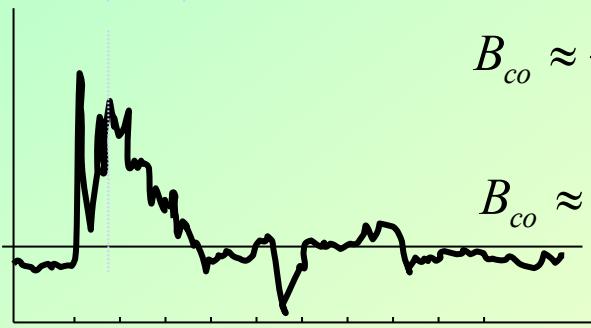
Time domain view



Freq. domain view



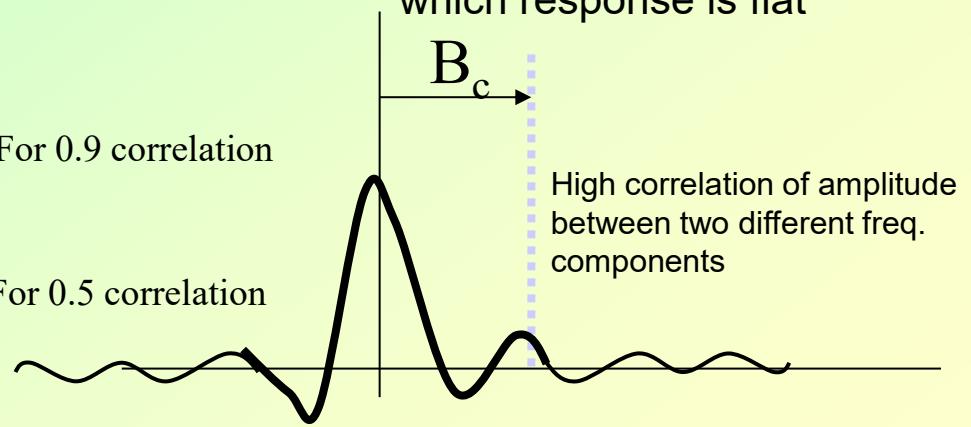
$\leftrightarrow \sigma_\tau$ RMS delay spread



$$B_{co} \approx \frac{1}{50\sigma_\tau} \text{ For 0.9 correlation}$$

$$B_{co} \approx \frac{1}{5\sigma_\tau} \text{ For 0.5 correlation}$$

Range of freq over
which response is flat



Summary

- Wireless communication systems
- Radiation from antenna
- Signal propagation
- Channel model
- Interference

- **Next lecture: Propagation Loss**